复变函数与高等数学的联系

复变函数与高等数学的联系,第1张

我刚学完复变函数感觉不是很难,原因是我的高数基础比较好。

学习复变函数需要有微积分的基础,除了微分、积分之外,复变函数与高等数学中的曲线积分、无穷级数有特别紧密的联系。

一个复变函数相当于两个二元函数,但又与研究两个独立的二元函数不同,因为作为初等复变函数的实部与虚部的两个二元函数,在它们的定义区域内,总是满足柯西-黎曼条件的(有点类似曲线积分里积分与路径无关的那样的条件),这就使得复变函数具有不同于实变函数的美好性质,例如复变函数只要有导数,就一定无穷次可导等等。

复变函数的概念学习可能会比实变函数的概念学习困难些,但只要学会了概念,复变函数里的题目要比实变函数里的题目容易解决。

如果高数基础不牢,那你复变课上就要跟紧老师思路才容易上手!

望采纳!

复变函数论主要包括单值解析函数理论、黎曼曲面理论、几何函数论、留数理论、广义解析函数等方面的内容。如果当函数的变量取某一定值的时候,函数就有一个唯一确定的值,那么这个函数解就叫做单值解析函数,多项式就是这样的函数。复变函数也研究多值函数,黎曼曲面理论是研究多值函数的主要工具。由许多层面安放在一起而构成的一种曲面叫做黎曼曲面。利用这种曲面,可以使多值函数的单值枝和枝点概念在几何上有非常直观的表示和说明。对于某一个多值函数,如果能作出它的黎曼曲面,那么,函数在黎曼曲面上就变成单值函数。黎曼曲面理论是复变函数域和几何间的一座桥梁,能够使人们把比较深奥的函数的解析性质和几何联系起来。关于黎曼曲面的研究还对另一门数学分支拓扑学有比较大的影响,逐渐地趋向于讨论它的拓扑性质。

复变函数论中用几何方法来说明、解决问题的内容,一般叫做几何函数论,复变函数可以通过共形映象理论为它的性质提供几何说明。导数处处不是零的解析函数所实现的映像就都是共形映象,共形映像也叫做保角变换。共形映象在流体力学、空气动力学、d性理论、静电场理论等方面都得到了广泛的应用。留数理论是复变函数论中一个重要的理论。留数也叫做残数,它的定义比较复杂。应用留数理论对于复变函数积分的计算比起线积分计算方便。计算实变函数定积分,可以化为复变函数沿闭回路曲线的积分后,再用留数基本定理化为被积分函数在闭合回路曲线内部孤立奇点上求留数的计算,当奇点是极点的时候,计算更加简洁。把单值解析函数的一些条件适当地改变和补充,以满足实际研究工作的需要,这种经过改变的解析函数叫做广义解析函数。广义解析函数所代表的几何图形的变化叫做拟保角变换。解析函数的一些基本性质,只要稍加改变后,同样适用于广义解析函数。

在二次、三次代数方程求根的公式中就出现了形为式一的一类数,其中α,b是实数。式二在实数范围内是没有意义的,因此在很长时间里这类数不能为人们所理解。R·笛卡儿曾称之为虚数。但是随着数学的发展,这类数的重要性就日益显现出来。例如,每一个代数方程在此数域内至少有一个根,这就是代数学的基本定理。有时也称它为达朗贝尔定理,而最初的严格证明则是由CF高斯给出的。

后来人们习惯以i表示,并且称α+bi为复数。在复数α+bi与平面上的点(α,b)之间可以建立一一对应。 L欧拉在初等函数中引进了复变数,并给出了著名的欧拉公式 e^ix=cosx+isinx。欧拉公式揭示了三角函数与指数函数间的联系。

这个是没有必要用z=u(x,y)+v(x,y)i做的,只要知道两个结论就可以了。首先函数解析的点一定连续,所以函数的间断点处一定不解析,所以本题中z=正负1处不解析。另外复变函数凡是以z为自变量的初等函数(不是f(z)=z共轭那种类型的)除了间断点外都是解析的,这是因为z=x+iy本身是满足柯西黎曼方程的,所以f(z)可以看成是解析函数的复合函数,所以也是解析的。所以本题除z=正负1以外都解析。

二者的唯一区别为:零点是函数值为零的点,极点则首先是不解析的点。

如果复变函数在一点可导且在这点的一个领域内处处可导,则称复变函数在这一点解析(注意复变函数在一点可导未必解析即可导是解析的必要不充分条件),如果复变函数在区域D内处处可导则称复变函数在区域D内解析。

因为实变函数与复变函数的主要差别就在与复变函数的变量为复数事变函数的为实数,总所周知在实变函数中许多的函数都是由初等函数复合而成。

由此不难想象许多的复变函数也是由复初等函数复合而成的,因此认识清楚复变函数的初等函数也是由必要的。

如果一个复变函数的在其孤立奇点处的洛朗展开式中不包含的负幂项,那么就称这个奇点为孤立奇点,如果负幂项次数绝对值的最大值为m我们就称这个奇点为m级级点,如果有无穷多个负幂项那么就称这个奇点为本性奇点。

扩展资料:

解析函数可以在圆环域内展开为幂级数,可以在圆环域内展开为洛朗级数。圆环的一种退化形式是一点的去心领域,当函数在一点的去心领域内解析而在这点不解析的时候这一点就是复变函数的一个孤立奇点。

所以洛朗级数就成为研究复变函数孤立奇点的一个有力工具,而解析函数在孤立奇点处的留数是解析函数论中的重要概念之一,且留数在计算上有着巧妙的运用,复变函数在闭曲线上的积分问题可以转化求其孤立奇点的留数问题。

e^z=e^(x+iy)=e^x(cosy+isiny),设实部u=e^x cosy,虚部v=e^x siny

∂u/∂x=e^x cosy,∂u/∂y=-e^x siny

∂v/∂x=e^x siny,∂v/∂y=e^x cosy

四个偏导数均是初等二元函数的组合,所以都连续

且柯西黎曼方程

∂u/∂x=∂v/∂y=e^x cosy

∂v/∂x=-∂u/∂y=e^x siny

对任意x,y成立,

所以e^z在整个复平面上解析

复变函数的定义域就是把在数学上没有意义或者不可能实现的情况排除。列如0处其实就是r等于0,z等于r括号cosθ加isinθ括号等于0是有定义的,唯一区别就是辅角无定义而已,也就是argz在0点不连续,这跟ln的性质是一样的,但都不影响这些初等函数的解析性。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12180379.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存