正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
图形特征:
集中性:正态曲线的高峰位于正中央,即均数所在的位置。
对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。
扩展资料:
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。
为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。
若 服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。
(标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。)
面积分布
1、实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同 范围内正态曲线下的面积可用公式计算。
2、正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68268949%。
P{|X-μ|<σ}=2Φ(1)-1=06826
横轴区间(μ-196σ,μ+196σ)内的面积为95449974%。
P{|X-μ|<2σ}=2Φ(2)-1=09544
横轴区间(μ-258σ,μ+258σ)内的面积为99730020%。
P{|X-μ|<3σ}=2Φ(3)-1=09974
参考资料:
正态分布密度函数公式:f(x)=exp{-(x-μ)²/2σ²}/[√(2π)σ]。计算时,先算出平均值和标准差μ、σ,代入正态分布密度函数表达式,给定x值,即可算出f值。
相关介绍:
正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),是一个非常重要的概率分布。在数学、物理及工程等领域以及统计学的许多方面有着重大的影响力。
正态分布最早由A棣莫弗在求二项分布的渐近公式中得到。CF高斯在研究测量误差时从另一个角度导出了它。PS拉普拉斯和高斯研究了它的性质。
正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。
但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。
在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。这要到20世纪正态小样本理论充分发展起来以后。
拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。
这是历史上第一次提到所谓“元误差学说”——误差是由大量的、由种种原因产生的元误差叠加而成。后来到1837年,海根(GHagen)在一篇论文中正式提出了这个学说。
正态分布密度函数公式:f(x)=exp{-(x-μ)²/2σ²}/[√(2π)σ]。计算时,先算出平均值和标准差μ、σ,代入正态分布密度函数表达式,给定x值,即可算出f值。
正态分布密度函数公式
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ=0,σ=1时的正态分布是标准正态分布。
如果是计算概率,那就要用分布函数,但是它的分布函数是不能写成正常的解析式的。一般的计算方法就是,将标准正态分布函数的分布函数在各点的值计算出来制成表,实际计算时通过查表找概率。非标准正态分布函数可以转换成标准正态分布再算。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
扩展资料:
随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。
由于随机变量X的取值 只取决于概率密度函数的积分,所以概率密度函数在个别点上的取值并不会影响随机变量的表现。
如果一个函数和X的概率密度函数取值不同的点只有有限个、可数无限个或者相对于整个实数轴来说测度为0(是一个零测集),那么这个函数也可以是X的概率密度函数。
连续型的随机变量取值在任意一点的概率都是0。作为推论,连续型随机变量在区间上取值的概率与这个区间是开区间还是闭区间无关。要注意的是,概率P{x=a}=0,但{X=a}并不是不可能事件。
--概率密度函数
正态分布密度函数公式:f(x)=exp{-(x-μ)²/2σ²}/[√(2π)σ]。计算时,先算出平均值和标准差μ、σ,代入正态分布密度函数表达式,给定x值,即可算出f值。
正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),是一个非常重要的概率分布。在数学、物理及工程等领域以及统计学的许多方面有着重大的影响力。
正态分布最早由A棣莫弗在求二项分布的渐近公式中得到。CF高斯在研究测量误差时从另一个角度导出了它。PS拉普拉斯和高斯研究了它的性质。
参数含义:
正态分布有两个参数,即期望(均数)μ和标准差σ,σ2为方差。
正态分布具有两个参数μ和σ^2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ^2是此随机变量的方差,所以正态分布记作N(μ,σ2)。
μ是正态分布的位置参数,描述正态分布的集中趋势位置。概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小。正态分布以X=μ为对称轴,左右完全对称。正态分布的期望、均数、中位数、众数相同,均等于μ。
标准正态分布密度函数公式:
正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。
图形特征:
集中性:正态曲线的高峰位于正中央,即均数所在的位置。
对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1。即频率的总和为100%。
扩展资料:
由于一般的正态总体其图像不一定关于y轴对称,对于任一正态总体,其取值小于x的概率。只要会用它求正态总体在某个特定区间的概率即可。
为了便于描述和应用,常将正态变量作数据转换。将一般正态分布转化成标准正态分布。
若 服从标准正态分布,通过查标准正态分布表就可以直接计算出原正态分布的概率值。故该变换被称为标准化变换。
(标准正态分布表:标准正态分布表中列出了标准正态曲线下从-∞到X(当前值)范围内的面积比例。)
面积分布
1、实际工作中,正态曲线下横轴上一定区间的面积反映该区间的例数占总例数的百分比,或变量值落在该区间的概率(概率分布)。不同 范围内正态曲线下的面积可用公式计算。
2、正态曲线下,横轴区间(μ-σ,μ+σ)内的面积为68268949%。
P{|X-μ|<σ}=2Φ(1)-1=06826
横轴区间(μ-196σ,μ+196σ)内的面积为95449974%。
P{|X-μ|<2σ}=2Φ(2)-1=09544
横轴区间(μ-258σ,μ+258σ)内的面积为99730020%。
P{|X-μ|<3σ}=2Φ(3)-1=09974
参考资料:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)