伽马函数怎么求?

伽马函数怎么求?,第1张

Γ(x)=∫e^(-t)t^(x-1)dt

伽玛函数(Gamma Function)作为阶乘的延拓,是定义在复数范围内的亚纯函数,通常写成Γ(x)。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分,可以用来快速计算同伽马函数形式相类似的积分。我们使用了伽马函数,定义出了很多概率的分布,如Beta分布,卡方分布,狄利克雷分布和学生t分布等等。对于研究人员来说,伽马函数是是他们用的最普遍使用的功能。对于数据科学家而言,是生成统计模型和研究排队模型最好的方法。因此,伽马函数学好了还是挺关键的。

Γ(x)伽马函数公式的过程是当z为自然数的时候,Γ(z+1) = z,而且我们从这个公式可以看出它是一直在递增的,因此,我们可以让它和阶乘建立起联系,自然对数e表示的非常好,我们用洛必达法则,就可以说明它是收敛的,因为e^-x的值是要比x^z的值下降得很快。伽马函数已经有300多年的历史了,而且是在欧拉64岁失明后创作的,是值得我们信任的人。

希望我的回答能帮到你。

考研伽马函数公式为Γ(x)=∫0∞tx1etdt(x>0)。

与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分,可以用来快速计算同伽马函数形式相类似的积分。

直观的说也就是可以找到一条平滑的曲线y=x通过所有的整数点(n,n),从而可以把定义在整数集上的公式延拓到实数集合。

伽玛函数

伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。

1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16等可以用通项公式n²自然的表达,即便 n 为实数的时候,这个通项公式也是良好定义的。

Γ(x)称为伽玛函数,它是用一个积分式定义的,不是初等函数

伽马函数有性质:Γ(x+1)=xΓ(x),Γ(0)=1,Γ(1/2)=√π,对正整数n,有Γ(n+1)=n!

阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。

含义

在概率统计和其他应用学科中会经常用到伽玛函数和贝塔函数,有的反常积分的计算最后也会归结为贝塔函数或伽玛函数。

当P>0且Q>0时贝塔函数收敛。贝塔函数具有很好的性质,以及实用的递推公式,另外需要注意的是伽玛函数和贝塔函数之间的关系。

具体见:

是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。

扩展资料:

伽玛函数的定义(或叫第二类欧拉积分):

Γ(x)=积分:e^(-t)*t^(x-1)dt

(e的负t次方乘以的(x-1)次方),积分区间是0到正无穷,x>0

而可以把x延拓到复平面上,除了0和负整数的点.这里,利用Γ函数在x>0的区间上的性质Γ(x+1)=xΓ(x)

,可以定义:

Γ(z)=Γ(z+n+1)/z(z+1)(z+2)...(z+n)

在正整数的范围内,由于Γ(x+1)=xΓ(x)

关系,Γ(n+1)=n!

这样,因为z可以取非整数,我们就用伽玛函数延拓了阶乘的定义.定义x!=Γ(x+1),这里x可以取非整数。

参考资料:

-伽玛函数

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12182495.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存