设f(t)为一非正弦周期函数,其周期为T,频率和角频率分别为f , ω1。由于工程实际中的非正弦周期函数,一般都满足狄里赫利条件,所以可将它展开成傅里叶级数。即
其中A0/2称为直流分量或恒定分量;其余所有的项是具有不同振幅,不同初相角而频率成整数倍关系的一些正弦量。A1cos(ω1t+ψ1)项称为一次谐波或基波,A1,ψ1分别为其振幅和初相角;A2cos(ω2t+ψ2)项的角频率为基波角频率ω1的2倍,称为二次谐波,A2,ψ2分别为其振幅和初相角;其余的项分别称为三次谐波,四次谐波等。基波,三次谐波,五次谐波……统称为奇次谐波;二次谐波,四次谐波……统称为偶次谐波;除恒定分量和基波外,其余各项统称为高次谐波。式(10-2-1)说明一个非正弦周期函数可以表示一个直流分量与一系列不同频率的正弦量的叠加。
上式有可改写为如下形式,即
当A0,An, ψn求得后,代入式 (10-2-1),即求得了非正弦周期函数f(t)的傅里叶级数展开式。
把非正弦周期函数f(t)展开成傅里叶级数也称为谐波分析。工程实际中所遇到的非正弦周期函数大约有十余种,它们的傅里叶级数展开式前人都已作出,可从各种数学书籍中直接查用。
从式(10-2-3)中看出,将n换成(-n)后即可证明有
a-n=an
b-n=-bn
A-n=An
ψ-n=-ψn
即an和An是离散变量n的偶函数,bn和ψn是n的奇函数。
二. 傅里叶级数的复指数形式
将式(10-2-2)改写为
可见 与 互为共轭复数。代入式(10-2-4)有
上式即为傅里叶级数的复指数形式。
下面对和上式的物理意义予以说明:
由式(10-2-5)得的模和辐角分别为
可见的模与幅角即分别为傅里叶级数第n次谐波的振幅An与初相角ψn,物理意义十分明确,故称为第n次谐波的复数振幅。
的求法如下:将式(10-2-3a,b)代入式(10-2-5)有
上式即为从已知的f(t)求的公式。这样我们即得到了一对相互的变换式(10-2-8)与(10-2-7),通常用下列符号表示,即
即根据式(10-2-8)由已知的f(t)求得,再将所求得的代入式(10-2-7),即将f(t)展开成了复指数形式的傅立叶级数。
在(10-2-7)中,由于离散变量n是从(-∞)取值,从而出现了负频率(-nω1)。但实际工程中负频率是无意义的,负频率的出现只具有数学意义,负频率(-nω1)一定是与正频率nω1成对存在的,它们的和构成了一个频率为nω1的正弦分量。即
引入傅立叶级数复指数形式的好处有二:(1)复数振幅同时描述了第n次谐波的振幅An和初相角ψn;(2)为研究信号的频谱提供了途径和方便。
高等数学中的傅立叶级数
傅立叶系数
傅立叶系数包括系数 ,积分号和它的积分域,以及里面的两个周期函数的乘积——其中一个是关于f的,另一个是关于x的函数f(x),另一个则是和级数项n有关的三角函数值。这个三角函数可以是正弦,也可以是余弦,因此傅立叶系数包括正弦系数和余弦系数。其中当n=0时,余弦值为1,此时存在一个特殊的系数 ,它只与x有关。正弦系数再成一个正弦,余弦再乘一个余弦,相加并且随n求和,再加上一半的 ,就称为了这个特别的函数f(x)的傅立叶级数。为什么它特别呢,我想因为这里只有它只限于一个周期函数而已,而级数的周期就是f(x)的周期,2 。
如果函数f(x)存在一个周期,但是不是2 了,而是关于y轴对称的任意一个范围,它还能写成傅立叶级数么?也可以的。只要把傅立叶系数里的 换成l,并且把积分号里的三角函数中的n 下除一个l,同时把系数以外的那个n 底下也除一个l。其他的都不动。也可以认为,2 周期的傅立叶级数其实三角函数中x前面的系数应该是 ,其他的 (积分域和系数)应该是x,只不过这时所有的l都是 罢了。
前面提及了,周期或是积分域,是关于y轴的一个任意范围。其实周期函数不用强调这个,但是为什么还要说呢?因为要特别强调一下定义域是满的。有些函数的定义域不是满的,是0到l,当然这样它有可能不是周期的。这些函数能写成傅立叶级数么?同样可以。而且,它的写法不再是正弦和余弦函数的累积,而是单独的一个正弦函数或是余弦函数。具体怎么写,就取决于怎么做。因为域是一半的,所以自然而然想到把那一半补齐,f就成了周期函数。补齐既可以补成奇函数也可以补成偶函数。补成积函数,写成的级数只有正弦项,即 为0。补成偶函数,写成的级数就只含有余弦项和第一项,即 为0。而,傅立叶系数相比非积非偶的函数要大一倍。
其实,如果不经延拓,上面那些对于奇偶函数同样使用。
在做题时,常常看到级数后面跟着一个系数还有一个正弦函数,然后后面给出了这个系数很复杂的一串式子,这时候就容易突然短路了。但是如果再定睛一看,会发现其实那个系数不过是一个有积分的傅立叶系数而已。那么一大串,应该看什么呢?应当先看积分域,一下就可以定出周期了。第二步要明确级数和函数的关系即等价关系。函数不但包含在级数中,而且函数本身也是和级数等价的。但一般那个级数里的函数是一个摆设,不起什么作用
傅立叶变换
中文译名
Transformée de Fourier有多种中文译名,常见的有“傅里叶变换”、“傅立叶变换”、“付立叶变换”、“富里叶变换”、“富里哀变换”等等。为方便起见,本文统一写作“傅里叶变换”。
应用
傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。
概要介绍
傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的(参见:林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为 C C Lin & L A Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc, New York, 1974)。
傅里叶变换属于谐波分析。
傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;
正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;
卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;
离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT))
基本性质
线性性质
两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数f \left( x\right )和g \left(x \right)的傅里叶变换\mathcal[f]和\mathcal[g]都存在,α 和 β 为任意常系数,则\mathcal[\alpha f+\beta g]=\alpha\mathcal[f]+\beta\mathcal[g];傅里叶变换算符\mathcal可经归一化成为么正算符;
频移性质
若函数f \left( x\right )存在傅里叶变换,则对任意实数 ω0,函数f(x) e^{i \omega_ x}也存在傅里叶变换,且有\mathcal[f(x)e^{i \omega_ x}]=F(\omega + \omega _0 ) 。式中花体\mathcal是傅里叶变换的作用算子,平体F表示变换的结果(复函数),e 为自然对数的底,i 为虚数单位\sqrt;
微分关系
若函数f \left( x\right )当|x|\rightarrow\infty时的极限为0,而其导函数f'(x)的傅里叶变换存在,则有\mathcal[f'(x)]=-i \omega \mathcal[f(x)] ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 − iω 。更一般地,若f(\pm\infty)=f'(\pm\infty)=\ldots=f^{(k-1)}(\pm\infty)=0,且\mathcal[f^{(k)}(x)]存在,则\mathcal[f^{(k)}(x)]=(-i \omega)^ \mathcal[f] ,即 k 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子( − iω)k。
卷积特性
若函数f \left( x\right )及g \left( x\right )都在(-\infty,+\infty)上绝对可积,则卷积函数fg=\int_{-\infty}^{+\infty} f(x-\xi)g(\xi)d\xi的傅里叶变换存在,且\mathcal[fg]=\mathcal[f]\cdot\mathcal[g] 。卷积性质的逆形式为\mathcal^[F(\omega)G(\omega)]=\mathcal^[F(\omega)]\mathcal^[G(\omega)] ,即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积。
Parseval定理
若函数f \left( x\right )可积且平方可积,则\int_{-\infty}^{+\infty} f^2 (x)dx = \frac{2\pi}\int_{-\infty}^{+\infty} |F(\omega)|^d\omega 。其中 F(ω) 是 f(x) 的傅里叶变换。
傅里叶变换的不同变种
连续傅里叶变换
主条目:连续傅立叶变换
一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。
f(t) = \mathcal^[F(\omega)] = \frac{\sqrt{2\pi}} \int\limits_{-\infty}^\infty F(\omega) e^{i\omega t}\,d\omega
上式其实表示的是连续傅里叶变换的逆变换,即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。反过来,其正变换恰好是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅立叶变换对(transform pair)。
一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。
当f(t)为奇函数(或偶函数)时,其余弦(或正弦)分量将消亡,而可以称这时的变换为余弦转换(cosine transform) 或 正弦转换(sine transform)
另一个值得注意的性质是,当f(t) 为纯实函数时,F(−ω) = F(ω)成立
傅里叶级数
主条目:傅里叶级数
连续形式的傅里叶变换其实是傅里叶级数的推广,因为积分其实是一种极限形式的求和算子而已。对于周期函数,其傅里叶级数是存在的:
f(x) = \sum_{n=-\infty}^{\infty} F_n \,e^ ,
其中Fn 为复振幅。对于实值函数,函数的傅里叶级数可以写成:
f(x) = \fraca_0 + \sum_{n=1}^\infty\left[a_n\cos(nx)+b_n\sin(nx)\right],
其中an和bn是实频率分量的振幅。
离散时间傅里叶变换
主条目:离散时间傅里叶变换
离散傅里叶变换是离散时间傅里叶变换(DTFT)的特例(有时作为后者的近似)。DTFT在时域上离散,在频域上则是周期的。DTFT可以被看作是傅里叶级数的逆。
离散傅里叶变换
主条目:离散傅里叶变换
为了在科学计算和数字信号处理等领域使用计算机进行傅里叶变换,必须将函数xn 定义在离散点而非连续域内,且须满足有限性或周期性条件。这种情况下, 使用离散傅里叶变换,将函数 xn 表示为下面的求和形式:
x_n = \frac1 \sum_{k=0}^ X_k e^{i\frac{2\pi} kn} \qquad n = 0,\dots,N-1
其中Xk是傅里叶振幅。直接使用这个公式计算的计算复杂度为\mathcal(n^2),而快速傅里叶变换(FFT)可以将复杂度改进为\mathcal(n \log n)。计算复杂度的降低以及数字电路计算能力的发展使得DFT成为在信号处理领域十分实用且重要的方法。
在阿贝尔群上的统一描述
以上各种傅里叶变换可以被更统一的表述成任意局部紧致的阿贝尔群上的傅里叶变换。这一问题属于调和分析的范畴。在调和分析中, 一个变换从一个群变换到它的对偶群(dual group)。此外,将傅里叶变换与卷积相联系的卷积定理在调和分析中也有类似的结论。傅里叶变换的广义理论基础参见庞特里雅金对偶性(英文版)中的介绍。
时频分析变换
主条目:时频分析变换
小波变换,chirplet转换和分数傅里叶转换试图得到时间信号的频率信息。同时解析频率和时间的能力在数学上受不确定性原理的限制。
傅里叶变换家族
下表列出了傅里叶变换家族的成员 容易发现,函数在时(频)域的离散对应于其像函数在频(时)域的周期性反之连续则意味着在对应域的信号的非周期性
变换 时间 频率
连续傅里叶变换 连续, 非周期性 连续, 非周期性
傅里叶级数 连续, 周期性 离散, 非周期性
离散时间傅里叶变换 离散, 非周期性 连续, 周期性
离散傅里叶变换 离散, 周期性 离散, 周期性
傅里叶变换的基本思想首先由法国学者傅里叶系统提出,所以以其名字来命名以示纪念。
从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换。它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。
傅立叶变换属于调和分析的内容。"分析"二字,可以解释为深入的研究。从字面上来看,"分析"二字,实际就是"条分缕析"而已。它通过对函数的"条分缕析"来达到对复杂函数的深入理解和研究。从哲学上看,"分析主义"和"还原主义",就是要通过对事物内部适当的分析达到增进对其本质理解的目的。比如近代原子论试图把世界上所有物质的本源分析为原子,而原子不过数百种而已,相对物质世界的无限丰富,这种分析和分类无疑为认识事物的各种性质提供了很好的手段。
在数学领域,也是这样,尽管最初傅立叶分析是作为热过程的解析分析的工具,但是其思想方法仍然具有典型的还原论和分析主义的特征。"任意"的函数通过一定的分解,都能够表示为正弦函数的线性组合的形式,而正弦函数在物理上是被充分研究而相对简单的函数类,这一想法跟化学上的原子论想法何其相似!奇妙的是,现代数学发现傅立叶变换具有非常好的性质,使得它如此的好用和有用,让人不得不感叹造物的神奇:
1 傅立叶变换是线性算子,若赋予适当的范数,它还是酉算子;
2 傅立叶变换的逆变换容易求出,而且形式与正变换非常类似;
3 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;
4 著名的卷积定理指出:傅立叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;
5 离散形式的傅立叶变换可以利用数字计算机快速的算出(其算法称为快速傅立叶变换算法(FFT))
正是由于上述的良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用。
拉普拉斯变换
拉普拉斯变换(英文:Laplace Transform),是工程数学中常用的一种积分变换。
如果定义:
f(t),是一个关于t,的函数,使得当t<0,时候,f(t)=0,;
s, 是一个复变量;
mathcal 是一个运算符号,它代表对其对象进行拉普拉斯积分int_0^infty e^ ,dt;F(s),是f(t),的拉普拉斯变换结果。
则f(t),的拉普拉斯变换由下列式子给出:
F(s),=mathcal left =int_ ^infty f(t),e^ ,dt
拉普拉斯逆变换,是已知F(s),,求解f(t),的过程。用符号 mathcal ^ ,表示。
拉普拉斯逆变换的公式是:
对于所有的t>0,;
f(t)
= mathcal ^ left
=frac int_ ^ F(s),e^ ,ds
c,是收敛区间的横坐标值,是一个实常数且大于所有F(s),的个别点的实部值。
为简化计算而建立的实变量函数和复变量函数间的一种函数变换。对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。
用 f(t)表示实变量t的一个函数,F(s)表示它的拉普拉斯变换,它是复变量s=σ+j&owega;的一个函数,其中σ和&owega; 均为实变数,j2=-1。F(s)和f(t)间的关系由下面定义的积分所确定:
如果对于实部σ >σc的所有s值上述积分均存在,而对σ ≤σc时积分不存在,便称 σc为f(t)的收敛系数。对给定的实变量函数 f(t),只有当σc为有限值时,其拉普拉斯变换F(s)才存在。习惯上,常称F(s)为f(t)的象函数,记为F(s)=L[f(t)];称f(t)为F(s)的原函数,记为ft=L-1[F(s)]。
函数变换对和运算变换性质 利用定义积分,很容易建立起原函数 f(t)和象函数 F(s)间的变换对,以及f(t)在实数域内的运算与F(s)在复数域内的运算间的对应关系。表1和表2分别列出了最常用的一些函数变换对和运算变换性质。
希尔伯特变换
希尔伯特变换
一物理可实现系统其传递函数为一解析函数,而其冲激响应必为因果函数(即时,冲击响应为0)。也就是说时域的因果性与频域得解析性是等效的。
我们来证明,物理可实现系统的传递函数的实部与虚部之间存在某种相互制约的联系。
对于物理可实现系统而言,其冲激响应为
其中为单位阶跃函数,系统传递函数为
F (43-3)
由频域卷积定理可知
(43-4)
由式(43-3)、(43-4)可得
(43-5)
(43-6)
由式(43-5)、(43-6)可知,物理可实现系统的传递函数其实部与虚部之间存在对应的确定关系。通常把这一对关系式称为希尔伯特变换对,式(43-5)称为希尔伯特变换,而式(43-6)称为希尔伯特反变换。
希尔伯特滤波器,它实质上是一个宽带相移网络,对中的任意频率分量均相移
如果题目是求x(2t+1)的FT,答案为:(1/2)exp[(1/2)jw]X(w/2)
傅里叶变换是针对于连续时间信号的。x(2n+1)是一个离散信号应该求的是z变换,题目如果是已知x(n)的Z变换是X(Z)求x(2n+1)的z变换。但是离散信号压缩或拉伸没什么意思,容易导致信号丢失,所以这个题目不对。
您好中文译名Transformée de Fourier有多种中文译名,常见的有“傅里叶变换”、“傅立叶变换”、“付立叶变换”、“富里叶变换”、“富里哀变换”等等。为方便起见,本文统一写作“傅里叶变换”。应用傅里叶变换在物理学、数论、组合数学、信号处理、概率论、统计学、密码学、声学、光学、海洋学、结构动力学等领域都有着广泛的应用(例如在信号处理中,傅里叶变换的典型用途是将信号分解成幅值分量和频率分量)。概要介绍 傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)或者它们的积分的线性组合。在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换。最初傅里叶分析是作为热过程的解析分析的工具被提出的(参见:林家翘、西格尔著《自然科学中确定性问题的应用数学》,科学出版社,北京。原版书名为 C C Lin & L A Segel, Mathematics Applied to Deterministic Problems in the Natural Sciences, Macmillan Inc, New York, 1974)。 傅里叶变换属于谐波分析。 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似; 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取; 卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段; 离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)) 基本性质线性性质两函数之和的傅里叶变换等于各自变换之和。数学描述是:若函数f \left( x\right )和g \left(x \right)的傅里叶变换\mathcal[f]和\mathcal[g]都存在,α 和 β 为任意常系数,则\mathcal[\alpha f+\beta g]=\alpha\mathcal[f]+\beta\mathcal[g];傅里叶变换算符\mathcal可经归一化成为么正算符;频移性质若函数f \left( x\right )存在傅里叶变换,则对任意实数 ω0,函数f(x) e^{i \omega_ x}也存在傅里叶变换,且有\mathcal[f(x)e^{i \omega_ x}]=F(\omega + \omega _0 ) 。式中花体\mathcal是傅里叶变换的作用算子,平体F表示变换的结果(复函数),e 为自然对数的底,i 为虚数单位\sqrt;微分关系若函数f \left( x\right )当|x|\rightarrow\infty时的极限为0,而其导函数f'(x)的傅里叶变换存在,则有\mathcal[f'(x)]=-i \omega \mathcal[f(x)] ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 iω 。更一般地,若f(\pm\infty)=f'(\pm\infty)=\ldots=f^{(k-1)}(\pm\infty)=0,且\mathcal[f^{(k)}(x)]存在,则\mathcal[f^{(k)}(x)]=(-i \omega)^ \mathcal[f] ,即 k 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子( iω)k。卷积特性若函数f \left( x\right )及g \left( x\right )都在(-\infty,+\infty)上绝对可积,则卷积函数fg=\int_{-\infty}^{+\infty} f(x-\xi)g(\xi)d\xi的傅里叶变换存在,且\mathcal[fg]=\mathcal[f]\cdot\mathcal[g] 。卷积性质的逆形式为\mathcal^[F(\omega)G(\omega)]=\mathcal^[F(\omega)]\mathcal^[G(\omega)] ,即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积。Parseval定理若函数f \left( x\right )可积且平方可积,则\int_{-\infty}^{+\infty} f^2 (x)dx = \frac{2\pi}\int_{-\infty}^{+\infty} |F(\omega)|^d\omega 。其中 F(ω) 是 f(x) 的傅里叶变换。傅里叶变换的不同变种连续傅里叶变换主条目:连续傅立叶变换 一般情况下,若“傅立叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”。“连续傅里叶变换”将平方可积的函数f(t) 表示成复指数函数的积分或级数形式。f(t) = \mathcal^[F(\omega)] = \frac{\sqrt{2\pi}} \int\limits_{-\infty}^\infty F(\omega) e^{i\omega t}\,d\omega 上式其实表示的是连续傅里叶变换的逆变换,即将时间域的函数f(t)表示为频率域的函数F(ω)的积分。反过来,其正变换恰好是将频率域的函数F(ω)表示为时间域的函数f(t)的积分形式。一般可称函数f(t)为原函数,而称函数F(ω)为傅里叶变换的像函数,原函数和像函数构成一个傅立叶变换对(transform pair)。一种对连续傅里叶变换的推广称为分数傅里叶变换(Fractional Fourier Transform)。ω) = F(ω)成立
课本是电子工业出版社出版的奥本海姆《信号与系统》第二版,刘树棠译。
视频课可以在网易公开课看到,搜索MIT的信号与系统,老师就是课本的作者。
p110 - p127
第二章我们就学到了,对于LTI系统的分析,将信号分解为基本信号的线性组合,这个方法对信号与系统的分析极为有用。
基本信号需要满足以下两个条件:
第二章我们用的是单位脉冲的移位来作为这个基本信号,并导出了卷积和与卷积积分。从这里开始学习傅里叶分析,基本信号选取的是复指数信号,即连续时间的 和离散时间的 信号,其中 和 都是复数。
对于LTI系统,复指数信号的重要性在于LTI系统对复指数信号的响应仍然是一个复指数信号,不同的只是在幅度上的变化,即
其中 或 是复振幅因子,一般来说是复变量 或 的函数。
一个信号,若系统对该信号的输出响应仅是一个常数(可能是复数)乘以输入,则该信号就是系统的特征函数,幅度因子就是特征值。
考虑连续时间LTI系统具有单位冲激响应 ,当输入 ,输出可以由卷积积分求出,有,
因为积分变量为 ,所以可以把 提出到积分外,
假设积分收敛,则
其中,
有输入 ,由卷积和得到LTI系统的输出
假设求和收敛,则
其中,
对于连续时间LTI系统而言,如果输入信号可以表示为复指数的线性组合,即
那么输出一定为,
同样的,对于离散时间LTI系统,如果输入可以表示为
那么输出一定可以表示为
一般来说, 和 可以是任意复数,但傅里叶分析仅限于 和 ,也就是只考虑 和 。
对于周期信号 ,满足该式的最小正值 就是基波周期, 为基波频率。
成谐波关系的复指数信号集就是,
这些信号的基波频率都是 的倍数,而且每个信号对 都是周期的。于是一个由成谐波关系的复指数线性组合构成的信号为,
这个信号 对 来说也是周期的。上式就称为傅里叶级数表示。
上式中, 这一项就是一个常数, 和 这两项都有基波频率等于 ,两者合在一起称为基波分量或一次谐波分量。依次有 次谐波分量。
我们一般研究实周期信号的傅里叶级数,那么就有,
对于上式中的求和,用 代替 ,于是
两式比较,发现需要 ,将 以极坐标形式写出, ,那么 可以表示为,
上式为实周期信号的傅里叶级数表示。由于复指数表示计算更为方便,我们后面都用复指数表示。
将给定的连续时间周期信号写成傅里叶级数,需要确定系数 。连续时间周期信号的傅里叶级数表示为,
左右同时乘以 ,得到
从 到 对 积分,得
交换求和与积分次序,得
对于积分 ,
综上,
因此得到,
总结一下,连续时间周期信号的傅里叶级数表达式
系数 称为 的傅里叶级数系数,或称频谱系数。
研究周期信号的有限项级数与 近似的问题,
令 为近似误差,
用一个周期内误差的能量来衡量近似误差的大小,
周期信号若想表示为傅里叶级数,必须满足两类条件,
满足这个条件并不意味着周期信号和它的傅里叶级数在每一个 值上都相等,只表示两者没有能量上的差别。
这个条件保证了每个系数 都是有限值。
对于一个不存在间断点的周期信号而言,傅里叶级数收敛且在每个 值上的级数都与原信号相等;
对于在一个周期内存在有限间断点的周期信号,除去那些间断点,级数与原信号相等;在间断点处,级数收敛于原信号不连续点处的平均值。
在这种情况下,两者没有能量上的差别。
吉布斯现象
表现为傅里叶级数在原信号不连续点处,傅里叶级数具有9%的超量,而且不论 取多大,这个超量不变。
一个不连续信号 的傅里叶级数的截断近似 ,一般来说,在接近不连续点处将呈现高频起伏和超量。
周期都为 的两个信号 和 ,其傅里叶级数系数分别是 和 ,即
那么就有
从这个性质可以看出,信号在时间上的移位,其傅里叶级数系数的模保持不变。
施加于连续时间信号上的时间反转会导致其对应的傅里叶级数系数序列的左右反转。
如果 是偶函数,那么其傅里叶级数系数也是偶函数;如果 是奇函数,那么其傅里叶级数系数也是奇函数。
可以看出时域尺度变换不会导致信号的傅里叶级数系数的变化,但其傅里叶级数表示还是变化了,因为基频变了。
有两个相同周期的连续时间周期信号 和 ,相乘后信号的傅里叶级数系数为
我们可以注意到,相同周期连续时间信号相乘后,其傅里叶级数系数 可以看作 和 的离散卷积和。我会在后面学习连续时间非周期信号傅里叶变换性质中,再次看到这个性质, 时间相乘映射到频域里的卷积 。
将一个周期信号 取其复数共轭(考虑信号为复数信号),那么其傅里叶级数系数为
当 为实函数时,那么有 ,也就是说此时 。
如果 为实偶函数,那么其傅里叶级数系数为实偶函数;如果 为实奇函数,其傅里叶级数系数为纯虚奇函数。
一个周期信号的平均功率等于其全部谐波分量的平均功率之和。
在13节中我们定义
当输入为 时,输出
当 为一般复数时, 称为系统函数,对于连续时间信号与系统而言,在这一章和下一章中,我们只考虑 为纯虚数, 。具有 形式的系统函数[即 被看作 的函数],该系统函数就被称为该系统的频率响应,
令 为一个周期信号,将其写作傅里叶级数表示
那么根据线性性质,输出可以得到
也就是说,LTI系统的作用就是通过乘以相应频率点上的频率响应值来逐个改变输入信号的每一个傅里叶系数。
这一节书中的内容也不复杂,主要是了解一下,第七章会集中介绍利用傅里叶变换方法研究滤波。用于改变频谱形状的LTI系统往往称为频率成形滤波器,近似无失真通过某些频率,而显著衰减或消除另一些频率的LTI系统称为频率选择性滤波器。
参考书中p153的电路图,一阶RC滤波器,根据选取的输出不同,如果选取电容两端的电压 为输出,系统为低通滤波器;如果选取电阻两端电压 为输出,就是高通滤波器。
假定该系统是 初始松弛 的,那么上面这个微分方程描述的就是一个LTI系统。当输入 时,输出一定为 ,将 和 代入微分方程,得到
当频率 接近0时, 趋近1;而当频率 增加时, 减小。也就是说这个系统在选取 为输出时,是一个非理想的低通滤波器。
滤波器设计中一个典型的权衡问题就是 的选取。如果我希望滤波器仅能通过很低的频率,那么 一定越大越好。但考虑其单位阶跃响应,
我们可以发现,随着 的增加,阶跃响应就需要更多的时间达到其长期稳态值1。这种在频域和时域特性之间的折中是LTI系统和滤波器分析与设计中要考虑的典型问题。
选取电阻两端电压 为输出,有
该系统的频率响应 可以求得,
这样和你解释傅里叶吧
首先我们知道线性代数里,一个N维的向量(F)可以由N个完备的正交归一基底叠加而成,叠加系数怎么求呢?就是直接用这个向量(f)点乘各基底(就是用点乘来求它在各基底的分量)。
好现在你把一个函数看成一个无限维的向量,每个函数值对应的就是一维,而在这个无限维的空间里,点乘被定义为这两个函数相乘后再积分(就跟高中里a·b=axbx+ayby一个道理)。
而sin nx 和 cos nx就是这个空间里的一组正交基底!!按这种点乘的定义他们相互正交!!(现在你明白为什么他们要积分出来个0了吧)
所以这就是傅里叶变换的精髓了,任何一个函数都能由这些相互正交的基底叠加出来,而叠加系数怎么求呢?就是前面说的点乘各基底(所以这就是为什么求叠加系数是用被展开函数去和这些sin cos积分)
最后注意一个问题就是基底要归一,归一就是基底的模长要等于1,模长就是自己点乘自己
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)