已知X是标准正态分布,求X的平方的概率密度函数

已知X是标准正态分布,求X的平方的概率密度函数,第1张

X的平方可看作X的函数。正如我们所学,若X服从标准正态分布,则他的函数也应服从标准正态分布,概率密度函数是一样的。这样X方的期望和方差由书中公式亦可求。

关键是若X是样本,则X方的西格玛和服从x方分布,概率密度函数见课本。比较复杂。

标准正态分布φ1等于1。

根据分布函数的性质

Φ(-1)=1-Φ(1)

∴Φ(1)-Φ(-1)=2Φ(1)-1

=2×08413-1

=06826

正态曲线

呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。

第一参数μ是遵从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2

)。

遵从正态分布的随机变量的概率规律为取

μ邻近的值的概率大

,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。它的形状是中间高两边低

,图像是一条位于x轴上方的钟形曲线。当μ=0,σ2

=1时,称为标准正态分布,记为N(0,1)。μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。

正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution),最早由A棣莫弗在求二项分布的渐近公式中得到。CF高斯在研究测量误差时从另一个角度导出了它。PS拉普拉斯和高斯研究了它的性质。[1] 是一个在数学、物理及工程等领域都非常重要的概率分布,在统计学的许多方面有着重大的影响力。

正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布。

正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学家研究,故正态分布又叫高斯分布,高斯这项工作对后世的影响极大,他使正态分布同时有了“高斯分布”的名称,后世之所以多将最小二乘法的发明权归之于他,也是出于这一工作。但现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。这要到20世纪正态小样本理论充分发展起来以后。拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加,根据他的中心极限定理,误差理应有高斯分布。这是历史上第一次提到所谓“元误差学说”——误差是由大量的、由种种原因产生的元误差叠加而成。后来到1837年,海根(GHagen)在一篇论文中正式提出了这个学说。

其实,他提出的形式有相当大的局限性:海根把误差设想成个数很多的、独立同分布的“元误差” 之和,每只取两值,其概率都是1/2,由此出发,按狄莫佛的中心极限定理,立即就得出误差(近似地)服从正态分布。拉普拉斯所指出的这一点有重大的意义,在于他给误差的正态理论一个更自然合理、更令人信服的解释。因为,高斯的说法有一点循环论证的气味:由于算术平均是优良的,推出误差必须服从正态分布;反过来,由后一结论又推出算术平均及最小二乘估计的优良性,故必须认定这二者之一(算术平均的优良性,误差的正态性) 为出发点。但算术平均到底并没有自行成立的理由,以它作为理论中一个预设的出发点,终觉有其不足之处。拉普拉斯的理论把这断裂的一环连接起来,使之成为一个和谐的整体,实有着极重大的意义。

设Y的分布函数为F(y),X的密度函数为g(x)

则F(y)=P(Y<=y)=P(e^X<=y)

当y<=0时,F(y)=0,y的密度函数f(x)=0

当y>0时,F(y)=P(x<=lny)=F(lny),y的概率密度函数f(x)=F‘(lny)

=g(lny)1/y

再将X的密度函数(标准正态分布)g(x)中的x用lny带入,则得Y的密度函数

正态分布公式

正态分布函数密度曲线可以表示为:称x服从正态分布,记为X~N(m,s2),其中μ为均值,s为标准差,X∈(-∞,+ ∞ )。标准正态分布另正态分布的μ为0,s为1。

扩展资料

正态分布符号定义

若随机变量X服从一个数学期望为μ、方差为的高斯分布,记为N(μ,)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。因其曲线呈钟形,因此人们又经常称之为钟形曲线。正态分布有两个参数,即均数(μ)和标准差(σ)。 

μ是位置参数,当σ固定不变时, μ越大,曲线沿横轴,越向右移动;反之, μ越小,则曲线沿横轴,越向左移动。是形状参数,当μ固定不变时,σ越大,曲线越平阔;σ越小,曲线越尖峭。通常用表示标准正态分布。

-正态分布

一般正态分布的分布函数F(x):

F(x)=P(X⩽x)=1√2πσ∫x−∞e−(t−μ)22σ2dt。

标准正态分布的分布函数Φ(x):

Φ(x)=P(X⩽x)=1√2π∫x−∞e−t22dt。

正态分布具体介绍:

正态分布概率计算公式:F(x)=Φ[(x-μ)/σ],正态分布也称“常态分布”,又名高斯分布,正态曲线呈钟型,两头低,中间高,左右对称因其曲线呈钟形,因此人们又经常称之为钟形曲线。

若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ^2)。

其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

当μ=0,σ=1时的正态分布是标准正态分布。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/12184354.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存