原题链接:53. Maximum Subarray
Given an integer array nums
, find the contiguous subarray (containing at least one number) which has the largest sum and return its sum.
A subarray is a contiguous part of an array.
Example 1:
Input: nums = [-2,1,-3,4,-1,2,1,-5,4]
Output: 6
Explanation: [4,-1,2,1] has the largest sum = 6.
Example 2:
Input: nums = [1]
Output: 1
Example 3:
Input: nums = [5,4,-1,7,8]
Output: 23
Constraints:
- 1 <= nums.length <= 105
- -104 <= nums[i] <= 104
Follow up: If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
方法一:贪心 思路:
遍历数组,记录当前和以及最大和,如果当前和大于最大和,就将最大和更新。
如果当前和小于0,那么就将当前和更新为0
class Solution {
public:
int maxSubArray(vector<int>& nums) {
// cur_sum当前和 max_sum最大和,初值给一个理论上的最小值
int cur_sum = 0;
int max_sum = INT_MIN;
for(int i = 0; i < nums.size(); i ++ ){
cur_sum += nums[i];
if(cur_sum > max_sum)
max_sum = cur_sum;
if(cur_sum < 0)
cur_sum = 0;
}
return max_sum;
}
};
复杂度分析:
- 时间复杂度:O(n)
- 空间复杂度:O(1),只用了一个临时变量cur_sum
方法二:动态规划及改进 思路:
用一个数组dp[i]表示 以第 i 个数结尾的连续子数组的最大和。
比较dp[i-1]+nums[i]和nums[i]的最大值,并存为dp[i]
状态转移方程为max(dp[i] + nums[i], nums[i]),最后的答案为dp[n-1]
需要用一个数组来记录每一个dp[i],空间复杂度为O(n),但其实只要维护上一次的最大值,并将本次的最大值更新即可,空间复杂度可改进为O(1)
c++代码:// 空间复杂度O(n)
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int n = nums.size();
vector<int> dp(n);
dp[0] = nums[0];
int ans = nums[0];
for(int i = 1; i < n; i ++ ){
dp[i] = max(dp[i - 1] + nums[i], nums[i]);
ans = max(ans, dp[i]);
}
return ans;
}
};
// 改进 空间复杂度O(1)
class Solution {
public:
int maxSubArray(vector<int>& nums) {
int n = nums.size();
int pre = nums[0], ans = nums[0];
for(int i = 1; i < n; i ++ ){
pre = max(pre + nums[i], nums[i]);
ans = max(ans, pre);
}
return ans;
}
};
复杂度分析:
- 时间复杂度:O(n)
- 空间复杂度:不优化O(n), 优化O(1)
方法三:分治
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)