【机器学习】python实现吴恩达机器学习作业合集(含数据集)

【机器学习】python实现吴恩达机器学习作业合集(含数据集),第1张

学习感言:

从3.7第一天开始,到今天4.4,一个多月的时间,陆续完成了听课,代码实现和总结博客,过程些许艰难,作为一个刚入门的学习者,收获了很多。


总结一下这一段时间的学习过程吧。


后面的学习方向还在思考。


目录

1.0 线性回归预测

2.0 线性可分logistic逻辑回归

2.1 线性不可分logistic逻辑回归

3.0 logistic逻辑回归手写多分类问题

3.1 神经网络正向传播

4.0 神经网络反向传播(BP算法)

5.0 方差与偏差

6.0 SVM支持向量机

7.0 kmeans聚类

7.1 PCA主成分分析

8.0 异常检测

8.1 推荐系统(协同过滤算法)


作业涉及到的数据集:

链接:https://pan.baidu.com/s/1Ym6WHYd0sVyThLErwLE9pg 
提取码:pg7z

Ng课程大纲总结 

无监督学习

线性规划,逻辑回归,神经网络,SVM

无监督学习

K-means , PCA , 异常检测

应用

推荐系统,

大规模机器学习

映射化简和数据并行:

将我们的数据集分配给不多台 计算机,让每一台计算机处理数据集的一个子集,然后我们将计所的结果汇总在求和。


这样 的方法叫做映射简化。


如果任何学习算法能够表达为,对训练集的函数的求和,那么便能将这个任 务分配给多台计算机(或者同一台计算机的不同 CPU 核心),以达到加速处理的目的。


构建机器学习系统tips

方差/偏差 ,正则化

决定下一步做什么:

算法评估,学习曲线(判断高偏差/高方差问题),误差分析

上限分析:机器学习的应用中,我们通常需要通过几个步骤才能进行最终的预测,我们如何能够 知道哪一部分最值得我们花时间和精力去改善呢?这个问题可以通过上限分析来回答。


问题描述和流程图 滑动窗口分类算法(CV) 获取大量数据和人工数据
以下是零碎:

现有的机器学习种类繁多,我们一般可以进行如下的分类标准:

  • 是否在人类监督下学习(监督学习、非监督学习、半监督学习和强化学习)
  • 是否可以动态的增量学习(在线学习和批量学习)
  • 是简单的将新的数据点和已知的数据点进行匹配,还是像科学家那样对训练数据进行模型检测,然后建立一个预测模型(基于实例的学习和基于模型的学习)
 一 、监督学习与无监督学习
  •  监督学习(Supervised Learning):对于数据集中每一个样本都有对应的标签,包括回归(regression)和分类(classification);
  • K近邻算法
  • 线性回归
  • logistic回归
  • 支持向量机(SVM)
  • 决策树和随机森林
  • 神经网络
  • 无监督学习(Unsupervised Learning):数据集中没有任何的标签,包括聚类(clustering),著名的一个例子是鸡尾酒晚会。


    实现公式:[W,s,v] = svd((repmat(sum(x.*x,1),size(x,1),1).*x)*x’);

  • 聚类算法
    • K均值算法(K-means)
    • 基于密度的聚类方法(DBSCAN)
    • 最大期望算法
  • 可视化和降维
    • 主成分分析(PCA)
    • 核主成分分析
  • 关联规则学习
    • Apriori
    • Eclat
  •  异常检测
  • 半监督学习 有些算法可以处理部分标记的训练数据,通常是大量未标记的数据和少量标记的数据,这种成为半监督学习。


  • 如照片识别就是很好的例子。


    在线相册可以指定识别同一个人的照片(无监督学习),当你把这些同一个人增加一个标签的后,新的有同一个人的照片就自动帮你加上标签了。


  • 强化学习

    强化学习,它的学习系统能够观测环境,做出选择,执行 *** 作并获得回报,或者是以负面回报的形式获得惩罚。


    它必须自行学习什么是最好的策略,从而随着时间推移获得最大的回 


二、在线学习 

    如果你有一个由连续的用户流引发的连续的数据流,进入你的网站,你能做的是使用一个在线学习机制,从数据流中学习 用户的偏好,然后使用这些信息来优化一些关于网站的决策。


    在线学习算法指的是对数据流而非离线的静态数据集的学习。


许多在线网站都有持续不断的用户流,对于每一个用户,网站希望能在不将数据存储到数据库中便顺利地进行算法学习。


  • 在线学习:产品搜索界面   产品推荐 

三、模型训练及选择(model selection)

可以依据训练误差和测试误差来评估假设hθ(x);
一般来说,我们将数据集划分成训练集(60%)、验证集(20%)和测试集(20%);

  • 训练集

训练集用来训练模型,学习参数θ :minJ(θ);即确定模型的权重和偏置这些参数,通常我们称这些参数为学习参数。


  • 验证集

验证集用于模型的选择,更具体地来说,验证集并不参与学习参数的确定,也就是验证集并没有参与梯度下降的过程。


用训练集对模型训练完毕后,再用验证集对模型测试,测试模型是否准确而不是训练模型的参数。


  • 测试集

测试集只使用一次,即在训练完成后评价最终的模型时使用。


它既不参与学习参数过程,也不参数超参数选择过程,而仅仅使用于模型的评价。



不能在训练过程中使用测试集,而后再用相同的测试集去测试模型。


这样做其实是一个cheat,使得模型测试时准确率很高。



四、模型优化

欠拟合,高偏差:说明没有很好的拟合训练数据 

过拟合,高方差:拟合训练数据过于完美,J(θ)≈0,导致模型的泛化能力很差,对于新样本不能准确预测


五、机器学习系统设计 不对称分类的误差评估(skewed classes)

错误率:有多少比例的西瓜被判断错误;

查准率(precision):算法挑出来的西瓜中有多少比例是好西瓜;

查全率(recall):所有的好西瓜中有多少比例被算法跳了出来。


  • 如果我们想要比较确信为正例时才判定为正例,那么提高阈值,模型会对应高查准率,低召回率;
  • 如果希望避免假阴性,那么降低阈值,模型会对应低查准率,高召回率

六、高级优化算法:

  • 共轭梯度算法
  • BFGS
  • L-BFGS

        优点:无需人工选择参数α;运算速度比梯度下降更快 

        缺点:更加复杂

最后:放一下Ng的结语,激励自己继续前进吧~  感谢老师

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/571637.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-09
下一篇 2022-04-09

发表评论

登录后才能评论

评论列表(0条)

保存