日常学习记录——读取自定义数据集

日常学习记录——读取自定义数据集,第1张

sklearn读取自定义数据集
import csv
from sklearn.utils import Bunch

# 读取西瓜数据集
def readWatermelonDataSet():
    FeatureNames = []
    FeatureList = []
    LabelList = []

    ifile = open("E:\My Word\study\RL0314\data.csv", "r")
    reader = csv.reader(ifile)
    cnt = 0
    for row in reader:
        if cnt == 0:  # 读取属性名称
            headers = row
            FeatureNames = headers[1:len(headers) - 1]
            # print(FeatureNames)
        else:  # 读取数据和标签
            headers = row
            FeatureList.append(headers[1:len(headers) - 1])
            LabelList.append(headers[len(headers) - 1])
        cnt = cnt + 1
    print(FeatureNames)
    print(FeatureList)
    print(LabelList)

    return Bunch(
        data=FeatureList,
        target=LabelList,
        feature_names=FeatureNames,
    )

注意:如果想要直接使用sklearn后续算法,数据集里应该为数值型的数据,但凡加入西瓜数据集其他栏后续都会报错,需要做好数据预处理。

这里使用的数据集是这样的:

完整决策树生成代码:

import csv
from sklearn.utils import Bunch
from sklearn import tree
from sklearn.model_selection import train_test_split
import pandas as pd
import graphviz
import os


# 读取西瓜数据集
def readWatermelonDataSet():
    FeatureNames = []
    FeatureList = []
    LabelList = []

    ifile = open("E:\My Word\study\RL0314\data.csv", "r")
    reader = csv.reader(ifile)
    cnt = 0
    for row in reader:
        if cnt == 0:  # 读取属性名称
            headers = row
            FeatureNames = headers[1:len(headers) - 1]
            # print(FeatureNames)
        else:  # 读取数据和标签
            headers = row
            FeatureList.append(headers[1:len(headers) - 1])
            LabelList.append(headers[len(headers) - 1])
        cnt = cnt + 1
    print(FeatureNames)
    print(FeatureList)
    print(LabelList)

    return Bunch(
        data=FeatureList,
        target=LabelList,
        feature_names=FeatureNames,
    )


def main():
    watermelon = readWatermelonDataSet()  # 西瓜数据
    pd.concat([pd.DataFrame(watermelon.data), pd.DataFrame(watermelon.target)], axis=1)
    Xtrain, Xtest, Ytarin, Ytest = train_test_split(watermelon.data, watermelon.target, test_size=0.3)  # 测试集30%训练集70%

    """建立模型"""
    clf = tree.DecisionTreeClassifier(criterion="entropy")  # 实例化,分类树
    clf = clf.fit(Xtrain, Ytarin)
    score = clf.score(Xtest, Ytest)
    score

    dot_data = tree.export_graphviz(clf
                                    , feature_names=watermelon.feature_names
                                    , class_names=["好瓜", "坏瓜"]
                                    , filled=True
                                    , rounded=True
                                    , special_characters=True
                                    , fontname="Microsoft YaHei")

    graph = graphviz.Source(dot_data)
    os.environ["PATH"] += os.pathsep + 'D:/DiyProgram/graphviz/bin/'
    graph.render("watermelon1", view=True)


if __name__ == "__main__":
    main()

运行结果:

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/714303.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-24
下一篇 2022-04-24

发表评论

登录后才能评论

评论列表(0条)

保存