实践数据湖iceberg 第三十课 mysql->iceberg,不同客户端有时区问题

实践数据湖iceberg 第三十课 mysql->iceberg,不同客户端有时区问题,第1张

系列文章目录

实践数据湖iceberg 第一课 入门
实践数据湖iceberg 第二课 iceberg基于hadoop的底层数据格式
实践数据湖iceberg 第三课 在sqlclient中,以sql方式从kafka读数据到iceberg
实践数据湖iceberg 第四课 在sqlclient中,以sql方式从kafka读数据到iceberg(升级版本到flink1.12.7)
实践数据湖iceberg 第五课 hive catalog特点
实践数据湖iceberg 第六课 从kafka写入到iceberg失败问题 解决
实践数据湖iceberg 第七课 实时写入到iceberg
实践数据湖iceberg 第八课 hive与iceberg集成
实践数据湖iceberg 第九课 合并小文件
实践数据湖iceberg 第十课 快照删除
实践数据湖iceberg 第十一课 测试分区表完整流程(造数、建表、合并、删快照)
实践数据湖iceberg 第十二课 catalog是什么
实践数据湖iceberg 第十三课 metadata比数据文件大很多倍的问题
实践数据湖iceberg 第十四课 元数据合并(解决元数据随时间增加而元数据膨胀的问题)
实践数据湖iceberg 第十五课 spark安装与集成iceberg(jersey包冲突)
实践数据湖iceberg 第十六课 通过spark3打开iceberg的认知之门
实践数据湖iceberg 第十七课 hadoop2.7,spark3 on yarn运行iceberg配置
实践数据湖iceberg 第十八课 多种客户端与iceberg交互启动命令(常用命令)
实践数据湖iceberg 第十九课 flink count iceberg,无结果问题
实践数据湖iceberg 第二十课 flink + iceberg CDC场景(版本问题,测试失败)
实践数据湖iceberg 第二十一课 flink1.13.5 + iceberg0.131 CDC(测试成功INSERT,变更 *** 作失败)
实践数据湖iceberg 第二十二课 flink1.13.5 + iceberg0.131 CDC(CRUD测试成功)
实践数据湖iceberg 第二十三课 flink-sql从checkpoint重启
实践数据湖iceberg 第二十四课 iceberg元数据详细解析
实践数据湖iceberg 第二十五课 后台运行flink sql 增删改的效果
实践数据湖iceberg 第二十六课 checkpoint设置方法
实践数据湖iceberg 第二十七课 flink cdc 测试程序故障重启:能从上次checkpoint点继续工作
实践数据湖iceberg 第二十八课 把公有仓库上不存在的包部署到本地仓库
实践数据湖iceberg 第二十九课 如何优雅高效获取flink的jobId
实践数据湖iceberg 第三十课 mysql->iceberg,不同客户端有时区问题


文章目录
  • 系列文章目录
  • 前言
  • 一、spark查询iceberg数据,日期加8, 市区原因
    • 1、spark sql查询iceberg带有日期的字段报关于timezone的错
    • 2、按照提示,进行去时区处理
    • 3. 更改local timezone
  • 二、 使用flink-sql查询,发现时间没问题
  • 三、强行给source 表加timezone,报错
  • 四、 上游表没timezone,下游表加timezone
  • 结论


前言

mysql->flink-sql-cdc->iceberg。从flink查数据时间没问题,从spark-sql查,时区+8了。对这个问题进行记录

最后解决方案: 源表没有timezone, 下游表需要设置local timezone,这样就没问题了!


一、spark查询iceberg数据,日期加8, 市区原因 1、spark sql查询iceberg带有日期的字段报关于timezone的错
java.lang.IllegalArgumentException: Cannot handle timestamp without timezone fields in Spark. Spark does not natively support this type but if you would like to handle all timestamps as timestamp with timezone set 'spark.sql.iceberg.handle-timestamp-without-timezone' to true. This will not change the underlying values stored but will change their displayed values in Spark. For more information please see https://docs.databricks.com/spark/latest/dataframes-datasets/dates-timestamps.html#ansi-sql-and-spark-sql-timestamps
        at org.apache.iceberg.relocated.com.google.common.base.Preconditions.checkArgument(Preconditions.java:142)
        at org.apache.iceberg.spark.source.SparkBatchScan.readSchema(SparkBatchScan.java:127)
        at org.apache.spark.sql.execution.datasources.v2.PushDownUtils$.pruneColumns(PushDownUtils.scala:136)
        at org.apache.spark.sql.execution.datasources.v2.V2ScanRelationPushDown$$anonfun$applyColumnPruning.applyOrElse(V2ScanRelationPushDown.scala:191)
        at org.apache.spark.sql.execution.datasources.v2.V2ScanRelationPushDown$$anonfun$applyColumnPruning.applyOrElse(V2ScanRelationPushDown.scala:184)
        at org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning(TreeNode.scala:481)
        at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:82)
        at org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:481)
        at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org$apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:30)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267)
        at org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263)
        at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
        at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
        at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:457)
        at org.apache.spark.sql.catalyst.trees.TreeNode.transform(TreeNode.scala:425)
        at org.apache.spark.sql.execution.datasources.v2.V2ScanRelationPushDown$.applyColumnPruning(V2ScanRelationPushDown.scala:184)
        at org.apache.spark.sql.execution.datasources.v2.V2ScanRelationPushDown$.apply(V2ScanRelationPushDown.scala:39)
        at org.apache.spark.sql.execution.datasources.v2.V2ScanRelationPushDown$.apply(V2ScanRelationPushDown.scala:35)
        at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute(RuleExecutor.scala:211)
        at scala.collection.LinearSeqOptimized.foldLeft(LinearSeqOptimized.scala:126)
        at scala.collection.LinearSeqOptimized.foldLeft$(LinearSeqOptimized.scala:122)
        at scala.collection.immutable.List.foldLeft(List.scala:91)
        at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute(RuleExecutor.scala:208)
        at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$execute$adapted(RuleExecutor.scala:200)
        at scala.collection.immutable.List.foreach(List.scala:431)
        at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:200)
        at org.apache.spark.sql.catalyst.rules.RuleExecutor.$anonfun$executeAndTrack(RuleExecutor.scala:179)
        at org.apache.spark.sql.catalyst.QueryPlanningTracker$.withTracker(QueryPlanningTracker.scala:88)
        at org.apache.spark.sql.catalyst.rules.RuleExecutor.executeAndTrack(RuleExecutor.scala:179)
        at org.apache.spark.sql.execution.QueryExecution.$anonfun$optimizedPlan(QueryExecution.scala:138)
        at org.apache.spark.sql.catalyst.QueryPlanningTracker.measurePhase(QueryPlanningTracker.scala:111)
        at org.apache.spark.sql.execution.QueryExecution.$anonfun$executePhase(QueryExecution.scala:196)
        at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
        at org.apache.spark.sql.execution.QueryExecution.executePhase(QueryExecution.scala:196)
        at org.apache.spark.sql.execution.QueryExecution.optimizedPlan$lzycompute(QueryExecution.scala:134)
        at org.apache.spark.sql.execution.QueryExecution.optimizedPlan(QueryExecution.scala:130)
        at org.apache.spark.sql.execution.QueryExecution.assertOptimized(QueryExecution.scala:148)
        at org.apache.spark.sql.execution.QueryExecution.$anonfun$executedPlan(QueryExecution.scala:166)
        at org.apache.spark.sql.execution.QueryExecution.withCteMap(QueryExecution.scala:73)
        at org.apache.spark.sql.execution.QueryExecution.executedPlan$lzycompute(QueryExecution.scala:163)
        at org.apache.spark.sql.execution.QueryExecution.executedPlan(QueryExecution.scala:163)
        at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId(SQLExecution.scala:101)
        at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
        at org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId(SQLExecution.scala:90)
        at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
        at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.run(SparkSQLDriver.scala:69)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processCmd(SparkSQLCLIDriver.scala:384)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.$anonfun$processLine(SparkSQLCLIDriver.scala:504)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.$anonfun$processLine$adapted(SparkSQLCLIDriver.scala:498)
        at scala.collection.Iterator.foreach(Iterator.scala:943)
        at scala.collection.Iterator.foreach$(Iterator.scala:943)
        at scala.collection.AbstractIterator.foreach(Iterator.scala:1431)
        at scala.collection.IterableLike.foreach(IterableLike.scala:74)
        at scala.collection.IterableLike.foreach$(IterableLike.scala:73)
        at scala.collection.AbstractIterable.foreach(Iterable.scala:56)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processLine(SparkSQLCLIDriver.scala:498)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver$.main(SparkSQLCLIDriver.scala:287)
        at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala)
        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
        at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
        at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
        at java.lang.reflect.Method.invoke(Method.java:498)
        at org.apache.spark.deploy.JavaMainApplication.start(SparkApplication.scala:52)
        at org.apache.spark.deploy.SparkSubmit.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:955)
        at org.apache.spark.deploy.SparkSubmit.doRunMain(SparkSubmit.scala:180)
        at org.apache.spark.deploy.SparkSubmit.submit(SparkSubmit.scala:203)
        at org.apache.spark.deploy.SparkSubmit.doSubmit(SparkSubmit.scala:90)
        at org.apache.spark.deploy.SparkSubmit$$anon.doSubmit(SparkSubmit.scala:1043)
        at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:1052)
        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
2、按照提示,进行去时区处理

set spark.sql.iceberg.handle-timestamp-without-timezone=true;


spark-sql (default)> set `spark.sql.iceberg.handle-timestamp-without-timezone`=true;
key     value
spark.sql.iceberg.handle-timestamp-without-timezone     true
Time taken: 0.016 seconds, Fetched 1 row(s)
spark-sql (default)> select * from stock_basic2_iceberg_sink;
i       ts_code symbol  name    area    industry        list_date       actural_controller      update_time     update_timestamp
0       000001.SZ       000001  平安银行        深圳    银行    19910403        NULL    2022-04-14 03:53:24     2022-04-21 00:58:59
1       000002.SZ       000002  万科A   深圳    全国地产        19910129        NULL    2022-04-14 03:53:31     2022-04-21 00:59:06
4       000006.SZ       000006  深振业A 深圳    区域地产        19920427        深圳市人民政府国有资产监督管理委员会    NULL    NULL
2       000004.SZ       000004  国华网安        深圳    软件服务        19910114        李映彤  2022-04-14 03:53:34     2022-04-21 00:59:11
3       000005.SZ       000005  ST星源  深圳    环境保护        19901210        郑列列,丁芃     2022-04-14 03:53:40     2022-04-22 00:59:15
Time taken: 1.856 seconds, Fetched 5 row(s)

数据湖的时间与mysql的时间,明显不一致。spark查iceberg的时间明显加了8小时。

结论:不能简单去时区

3. 更改local timezone
SET `table.local-time-zone` = 'Asia/Shanghai';

set spark.sql.iceberg.handle-timestamp-without-timezone=true; 后

再设置时区,发现无效:

设置为上海时区:


spark-sql (default)> SET `table.local-time-zone` = 'Asia/Shanghai';
key     value
table.local-time-zone   'Asia/Shanghai'
Time taken: 0.014 seconds, Fetched 1 row(s)
spark-sql (default)>  select * from stock_basic2_iceberg_sink;
i       ts_code symbol  name    area    industry        list_date       actural_controller      update_time     update_timestamp
0       000001.SZ       000001  平安银行        深圳    银行    19910403        NULL    2022-04-14 03:53:24     2022-04-21 00:58:59
1       000002.SZ       000002  万科A   深圳    全国地产        19910129        NULL    2022-04-14 03:53:31     2022-04-21 00:59:06
4       000006.SZ       000006  深振业A 深圳    区域地产        19920427        深圳市人民政府国有资产监督管理委员会    NULL    NULL
2       000004.SZ       000004  国华网安        深圳    软件服务        19910114        李映彤  2022-04-14 03:53:34     2022-04-21 00:59:11
3       000005.SZ       000005  ST星源  深圳    环境保护        19901210        郑列列,丁芃     2022-04-14 03:53:40     2022-04-22 00:59:15
Time taken: 0.187 seconds, Fetched 5 row(s)

设置为utc时区:

spark-sql (default)>  SET `table.local-time-zone` = 'UTC';
key     value
table.local-time-zone   'UTC'
Time taken: 0.015 seconds, Fetched 1 row(s)
spark-sql (default)>  select * from stock_basic2_iceberg_sink;
i       ts_code symbol  name    area    industry        list_date       actural_controller      update_time     update_timestamp
0       000001.SZ       000001  平安银行        深圳    银行    19910403        NULL    2022-04-14 03:53:24     2022-04-21 00:58:59
1       000002.SZ       000002  万科A   深圳    全国地产        19910129        NULL    2022-04-14 03:53:31     2022-04-21 00:59:06
4       000006.SZ       000006  深振业A 深圳    区域地产        19920427        深圳市人民政府国有资产监督管理委员会    NULL    NULL
2       000004.SZ       000004  国华网安        深圳    软件服务        19910114        李映彤  2022-04-14 03:53:34     2022-04-21 00:59:11
3       000005.SZ       000005  ST星源  深圳    环境保护        19901210        郑列列,丁芃     2022-04-14 03:53:40     2022-04-22 00:59:15
Time taken: 0.136 seconds, Fetched 5 row(s)

设置时区,发现无效
spark.sql.session.timeZone 待测试

二、 使用flink-sql查询,发现时间没问题

结论: 时间语义与mysql端是一致的:

  1. flink sql 端查询结果:
Flink SQL> select i,ts_code,update_time,update_timestamp from stock_basic2_iceberg_sink;


2. mysql端查询结果:

结论:时间语义与mysql端是一致的

三、强行给source 表加timezone,报错

把timestamp改为TIMESTAMP_LTZ


        String createSql = "CREATE TABLE stock_basic_source(\n" +
                "  `i`  INT NOT NULL,\n" +
                "  `ts_code`     CHAR(10) NOT NULL,\n" +
                "  `symbol`   CHAR(10) NOT NULL,\n" +
                "  `name` char(10) NOT NULL,\n" +
                "  `area`   CHAR(20) NOT NULL,\n" +
                "  `industry`   CHAR(20) NOT NULL,\n" +
                "  `list_date`   CHAR(10) NOT NULL,\n" +
                "  `actural_controller`   CHAR(100),\n" +
                "  `update_time`   TIMESTAMP_LTZ\n," +
                "  `update_timestamp`   TIMESTAMP_LTZ\n," +
                "    PRIMARY KEY(i) NOT ENFORCED\n" +
                ") WITH (\n" +
                "  'connector' = 'mysql-cdc',\n" +
                "  'hostname' = 'hadoop103',\n" +
                "  'port' = '3306',\n" +
                "  'username' = 'xxxxx',\n" +
                "  'password' = 'XXXx',\n" +
                "  'database-name' = 'xxzh_stock',\n" +
                "  'table-name' = 'stock_basic2'\n" +
                ")" ;

运行报错,

Caused by: java.lang.IllegalArgumentException: Unable to convert to TimestampData from unexpected value '1649879611000' of type java.lang.Long
	at com.ververica.cdc.debezium.table.RowDataDebeziumDeserializeSchema.convert(RowDataDebeziumDeserializeSchema.java:504)
	at com.ververica.cdc.debezium.table.RowDataDebeziumDeserializeSchema.convert(RowDataDebeziumDeserializeSchema.java:641)
	at com.ververica.cdc.debezium.table.RowDataDebeziumDeserializeSchema.convertField(RowDataDebeziumDeserializeSchema.java:626)
	at com.ververica.cdc.debezium.table.RowDataDebeziumDeserializeSchema.access        String createSql = "CREATE TABLE stock_basic_source(\n" +
                "  `i`  INT NOT NULL,\n" +
                "  `ts_code`     CHAR(10) NOT NULL,\n" +
                "  `symbol`   CHAR(10) NOT NULL,\n" +
                "  `name` char(10) NOT NULL,\n" +
                "  `area`   CHAR(20) NOT NULL,\n" +
                "  `industry`   CHAR(20) NOT NULL,\n" +
                "  `list_date`   CHAR(10) NOT NULL,\n" +
                "  `actural_controller`   CHAR(100),\n" +
                "  `update_time`   TIMESTAMP\n," +
                "  `update_timestamp`   TIMESTAMP\n," +
                "    PRIMARY KEY(i) NOT ENFORCED\n" +
                ") WITH (\n" +
                "  'connector' = 'mysql-cdc',\n" +
                "  'hostname' = 'hadoop103',\n" +
                "  'port' = '3306',\n" +
                "  'username' = 'XX',\n" +
                "  'password' = 'XX" +
                "  'database-name' = 'xxzh_stock',\n" +
                "  'table-name' = 'stock_basic2'\n" +
                ")" ;
0(RowDataDebeziumDeserializeSchema.java:63)
	at com.ververica.cdc.debezium.table.RowDataDebeziumDeserializeSchema.convert(RowDataDebeziumDeserializeSchema.java:611)
	at com.ververica.cdc.debezium.table.RowDataDebeziumDeserializeSchema.convert(RowDataDebeziumDeserializeSchema.java:641)
	at com.ververica.cdc.debezium.table.RowDataDebeziumDeserializeSchema.extractAfterRow(RowDataDebeziumDeserializeSchema.java:146)
	at com.ververica.cdc.debezium.table.RowDataDebeziumDeserializeSchema.deserialize(RowDataDebeziumDeserializeSchema.java:121)
	at com.ververica.cdc.connectors.mysql.source.reader.MySqlRecordEmitter.emitElement(MySqlRecordEmitter.java:118)
	at com.ververica.cdc.connectors.mysql.source.reader.MySqlRecordEmitter.emitRecord(MySqlRecordEmitter.java:100)
	at com.ververica.cdc.connectors.mysql.source.reader.MySqlRecordEmitter.emitRecord(MySqlRecordEmitter.java:54)
	at org.apache.flink.connector.base.source.reader.SourceReaderBase.pollNext(SourceReaderBase.java:128)
	at org.apache.flink.streaming.api.operators.SourceOperator.emitNext(SourceOperator.java:294)
	at org.apache.flink.streaming.runtime.io.StreamTaskSourceInput.emitNext(StreamTaskSourceInput.java:69)
	at org.apache.flink.streaming.runtime.io.StreamOneInputProcessor.processInput(StreamOneInputProcessor.java:66)
	at org.apache.flink.streaming.runtime.tasks.StreamTask.processInput(StreamTask.java:423)
	at org.apache.flink.streaming.runtime.tasks.mailbox.MailboxProcessor.runMailboxLoop(MailboxProcessor.java:204)
	at org.apache.flink.streaming.runtime.tasks.StreamTask.runMailboxLoop(StreamTask.java:684)
	at org.apache.flink.streaming.runtime.tasks.StreamTask.executeInvoke(StreamTask.java:639)
	at org.apache.flink.streaming.runtime.tasks.StreamTask.runWithCleanUpOnFail(StreamTask.java:650)
	at org.apache.flink.streaming.runtime.tasks.StreamTask.invoke(StreamTask.java:623)
	at org.apache.flink.runtime.taskmanager.Task.doRun(Task.java:779)
	at org.apache.flink.runtime.taskmanager.Task.run(Task.java:566)
	at java.lang.Thread.run(Thread.java:748)
22/04/21 10:49:30 INFO akka.AkkaRpcService: Stopping Akka RPC service.

能不能给下游表加timezone?

四、 上游表没timezone,下游表加timezone

下游表:mysql的datetime和timestamp, 由原来对应的TIMESTAMP,改为TIMESTAMP_LTZ
LTZ: LOCAL TIME ZONE的意思

mysql表结构:

mysql表:

        String createSQl = "CREATE TABLE if not exists stock_basic2_iceberg_sink(\n" +
                "  `i`  INT NOT NULL,\n" +
                "  `ts_code`    CHAR(10) NOT NULL,\n" +
                "  `symbol`   CHAR(10) NOT NULL,\n" +
                "  `name` char(10) NOT NULL,\n" +
                "  `area`   CHAR(20) NOT NULL,\n" +
                "  `industry`   CHAR(20) NOT NULL,\n" +
                "  `list_date`   CHAR(10) NOT NULL,\n" +
                "  `actural_controller`   CHAR(100) ,\n" +
                "  `update_time`   TIMESTAMP_LTZ\n," +
                "  `update_timestamp`   TIMESTAMP_LTZ\n," +
                "   PRIMARY KEY(i) NOT ENFORCED\n" +
                ") with(\n" +
                " 'write.metadata.delete-after-commit.enabled'='true',\n" +
                " 'write.metadata.previous-versions-max'='5',\n" +
                " 'format-version'='2'\n" +
                ")";

下游表:

 

测试后,发现OK了。
spark-sql的查询结果:

flink-sql 查询的结果:

结论

关于日期的问题:源表没有timezone, 下游表需要设置local timezone

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/719716.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-25
下一篇 2022-04-25

发表评论

登录后才能评论

评论列表(0条)

保存