AggregatingState介绍
- AggregatingState需要和AggregateFunction配合使用
- add()方法添加一个元素,触发AggregateFunction计算
- get()获取State的值
需求:计算每个设备10秒内的平均温度
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.state.AggregatingState;
import org.apache.flink.api.common.state.AggregatingStateDescriptor;
import org.apache.flink.api.common.typeinfo.TypeHint;
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.functions.KeySelector;
import org.apache.flink.api.java.tuple.Tuple2;
import org.apache.flink.api.java.tuple.Tuple3;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import org.apache.flink.util.Collector;
import java.time.Duration;
import java.util.Random;
public class AggregatingStateTest {
public static void main(String[] args) throws Exception {
// 计算每个设备10s内温度的平均值
StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.getConfig().setAutoWatermarkInterval(100l);
DataStreamSource> tuple3DataStreamSource = env.addSource(new SourceFunction>() {
boolean flag = true;
@Override
public void run(SourceContext> ctx) throws Exception {
String[] str = {"水阀1", "水阀2", "水阀3"};
while (flag) {
int i = new Random().nextInt(3);
// 温度
int temperature = new Random().nextInt(100);
Thread.sleep(1000l);
// 设备号、温度、事件时间
ctx.collect(new Tuple3(str[i], temperature, System.currentTimeMillis()));
}
}
@Override
public void cancel() {
flag = false;
}
});
tuple3DataStreamSource.assignTimestampsAndWatermarks(WatermarkStrategy.>forBoundedOutOfOrderness(Duration.ofSeconds(2))
.withTimestampAssigner(new SerializableTimestampAssigner>() {
@Override
public long extractTimestamp(Tuple3 stringIntegerLongTuple3, long l) {
return stringIntegerLongTuple3.f2;
}
})).keyBy(new KeySelector, String>() {
@Override
public String getKey(Tuple3 stringIntegerLongTuple3) throws Exception {
return stringIntegerLongTuple3.f0;
}
}).process(new KeyedProcessFunction, String>() {
Long interval = 10 * 1000l;
// 这个类型是aggregatingState中的输入和输出类型
AggregatingState aggregatingState = null;
@Override
public void open(Configuration parameters) throws Exception {
super.open(parameters);
// , Double>这是输入,中间状态,输出类型。TypeInformation.of(new TypeHint>(){})这个是aggregatingState存储的数据的类型
AggregatingStateDescriptor, Double> aggregatingStateDescriptor =
new AggregatingStateDescriptor, Double>("aggregatingState", new MyAggregate(), TypeInformation.of(new TypeHint>(){}));
aggregatingState = getRuntimeContext().getAggregatingState(aggregatingStateDescriptor);
}
@Override
public void processElement(Tuple3 value, Context ctx, Collector out) throws Exception {
// 10s的起始的时间
Long start = ctx.timestamp() - (ctx.timestamp() % interval);
Long timerTimestamp = start + interval;
ctx.timerService().registerEventTimeTimer(timerTimestamp);
aggregatingState.add(value.f1);
}
@Override
public void onTimer(long timestamp, OnTimerContext ctx, Collector out) throws Exception {
super.onTimer(timestamp, ctx, out);
Double aDouble = aggregatingState.get();
String str = "[" + ctx.getCurrentKey() + "] " + "十秒内的平均温度为:" + aDouble;
out.collect(str);
}
}).print();
env.execute("aggregatingState");
}
private static class MyAggregate implements AggregateFunction, Double> {
@Override
public Tuple2 createAccumulator() {
// 初始化温度和次数
return new Tuple2(0,0);
}
@Override
public Tuple2 add(Integer integer, Tuple2 integerIntegerTuple2) {
// 历史温度加上本次温度,次数加1
return new Tuple2(integerIntegerTuple2.f0 + integer, integerIntegerTuple2.f1 +1);
}
@Override
public Double getResult(Tuple2 integerIntegerTuple2) {
return Double.valueOf(integerIntegerTuple2.f0 / integerIntegerTuple2.f1);
}
@Override
public Tuple2 merge(Tuple2 integerIntegerTuple2, Tuple2 acc1) {
return new Tuple2(integerIntegerTuple2.f0 + acc1.f0, integerIntegerTuple2.f1 + acc1.f1);
}
}
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)