pytorch实战:采用Lenet运行iChallenge-PM数据集

pytorch实战:采用Lenet运行iChallenge-PM数据集,第1张

此次是学校老师布置的作业,结果是个大坑,飞桨的数据集是zip的的,数据集要自己搞,而且数据集的加载要飞桨的框架,并且这个数据集的训练集和验证集的加载还不一样。训练集的label在每张图片名上,而验证集的label在专门的csv下。

更正一下:飞桨这个项目可以用

 不过要加上这几个

 

 

iChange-PM数据集kaggle地址:https://www.kaggle.com/datasets/alexiuschao/palmpm

 

这里验证集加载参考了Pytorch创建自己的数据集(一)_生活所迫^_^的博客-CSDN博客_pytorch数据集制作x

训练集的加载参考了不同标签和数据类型匹配的数据集在PyTorch的加载(超详细保姆级别教学)_Moon_Boy_Li的博客-CSDN博客_多标签数据集加载

首先定义transform 。后面训练集和验证集的加载都会用到它

import numpy as np
from torchvision import transforms as T
import matplotlib.pyplot as plt
transform = T.Compose(
    [
        T.Resize(224),  # 缩放图片,保持长宽比不变,最短边为32像素
        T.CenterCrop(224),  # 从图片中间开始切出224*224的图片
        T.ToTensor(),  # 将图片(Image)转成Tensor,归一化至[0,1]
        T.Normalize(mean=[0.492, 0.461, 0.417], std=[0.256, 0.248, 0.251])  # 正则化 *** 作,标准化至[-1,1],规定均值和标准差
    ]
)

 再定义一个图像显示函数,方便后边调试使用

# 定义一个显示图像的函数
def imshow(img):
    img = img / 2 + 0.5 #unnormalize
    npimg = img.numpy()
    plt.imshow(np.transpose(npimg, (1,2,0)))
    plt.show()

 训练集加载

import os
import torch
import torch.nn as nn
from torchvision import transforms

from torch.utils.data import  DataLoader,Dataset
from torchvision import transforms, utils, datasets
import pandas as pd
import numpy as np
from PIL import Image
from torchvision import transforms, utils, datasets
import torchvision
import matplotlib.pyplot as plt

# 通过继承Dataset类来进行数据加载
class Train_Dataset(Dataset): # 继承Dataset
    def __init__(self, path_dir, transform=None):  # 初始化一些属性,获取数据集所在路径的数据列表
        self.path_dir = path_dir  # 文件路径
        self.transform = transform  # 对象进行数据处理
        self.images = os.listdir(self.path_dir)  # 把路径下的所有文件放在一个列表里;即在self.images这个张量中存储path_dir路径的所有文件的名称和后缀名

    def __len__(self): # 返回整个数据集的大小
        return len(self.images)

    def __getitem__(self, index):  # 根据索引index返回图像及标签,索引是根据文件夹内的文件顺序进行排列,从0开始递增
        image_index = self.images[index]  # 根据索引获取图像文件名称
        img_path = os.path.join(self.path_dir, image_index)  # 获取index在确定数值下图片的路径或者目录
        #print("img_path:"+img_path+"\n")#../input/palmpm/PALM-Training400/P0072.jpg
        img = Image.open(img_path).convert('RGB')  # 读取图像
        #plt.imshow(img)
        #plt.show()
        # 根据目录名称获取图像标签   H高度近视 为0  P病理疾病  为1   N正常为0
        
        label = img_path.split('/')[-1].split('.')[0]  # 绝对路径后加\, '\'的后一位, '.'的前一位就是标签,如H0001.jpg, 标签就是cat

        label_token=label
        label = 1 if 'P' in list(label)[0] else 0
        #print(label)
        if self.transform is not None:
            img = self.transform(img)
            #print(img.shape)
        return img, label

path_dir = "../input/palmpm/PALM-Training400"
images = os.listdir(path_dir)
#print(images)
len(images) # 读取数据集长度
print(len(images))
#实例化对象
Train_dataset = Train_Dataset(path_dir,transform=transform)
#将数据集导入DataLoader,进行shuffle以及选取batch_size
Traindata_loader = DataLoader(Train_dataset,batch_size=4,shuffle=None,num_workers=0)

 

 训练集的随机测试

# 随机获取部分训练数据
Train_dataiter = iter(Traindata_loader)
images, labels = Train_dataiter.next()
# 显示图像
imshow(torchvision.utils.make_grid(images))
# 打印标签
print(''.join('%s' % ["病变" if labels[m].item()==1 else "正常" for m in range(4)])) 

 验证集加载

import torch
import torchvision
from torchvision import transforms
from PIL import Image
from torch.utils.data import Dataset
from torch.utils.data import DataLoader
from PIL import Image
import pandas as pd
#路径是自己电脑里所对应的路径
datapath = r'../input/palmpm/PALM-Validation400'
txtpath = r'../input/palmpm/PALM-Validation-GT/labels.csv'

class Vaild_Dataset(Dataset):
    def __init__(self,txtpath, transform=None):
        #创建一个list用来储存图片和标签信息
        imgs = []
        #打开第一步创建的txt文件,按行读取,将结果以元组方式保存在imgs里
        csvfile = open(txtpath,encoding='utf-8')
        df = pd.read_csv(csvfile,engine='python')
        #print(len(datainfo))有401行
        #print(df)
        #print(df['imgName'])
        for i in range(len(df)-1):
            imgs.append((str(df["imgName"][i]),df["Label"][i]))
            #print(df["Label"][i],df["ID"][i],type(df["Label"][i]))
        #print(imgs)
        self.imgs = imgs
        self.transform = transform
    #返回数据集大小
    def __len__(self):
        return len(self.imgs)
    #打开index对应图片进行预处理后return回处理后的图片和标签
    def __getitem__(self, index):
        pic,label = self.imgs[index]
        pic = Image.open(datapath+'/'+pic)
        #pic = transforms.RandomResizedCrop(224)(pic)
        #pic = transforms.ToTensor()(pic)
        if self.transform is not None:
            pic = self.transform(pic)        
        return pic,label
#实例化对象
Valid_data = Vaild_Dataset(txtpath,transform=transform)
#将数据集导入DataLoader,进行shuffle以及选取batch_size
Valid_data_loader = DataLoader(Valid_data,batch_size=4,shuffle=True,num_workers=0)
#Windows里num_works只能为0,其他值会报错

 验证集的测试

# 随机获取部分训练数据
Valid_dataiter = iter(Valid_data_loader)
images, labels = Valid_dataiter.next()
# 显示图像
# 显示图像
imshow(torchvision.utils.make_grid(images))
# 打印标签
print(''.join('%s' % ["病变" if labels[m].item()==1 else "正常" for m in range(4)])) 

现在开始构建Lenet

from keras.models import Sequential
from keras.layers.core import Dense
import tensorflow as tf 
from torchvision import transforms
from keras.layers.convolutional_recurrent import ConvLSTM2D
from keras.layers.convolutional import Convolution2D
from keras.layers import LSTM
from keras.layers import Dense, Dropout, Activation
from keras.layers import Convolution1D, MaxPooling1D,MaxPool2D,Flatten,AvgPool2D
np.random.seed(seed=7)
import torch.nn.functional as F
torch.set_default_tensor_type(torch.DoubleTensor)
class LeNet(nn.Module):
    def __init__(self):
        super(LeNet, self).__init__()
        #原始图像32*32*3(我用的是224*224)
        self.conv1 = nn.Conv2d(3, 6, 5)
        #输出:28x28x6(我的是220*220)
        self.pool = nn.MaxPool2d(2, 2)
        #输出:14x14x6(我的是110*110)
        self.conv2 = nn.Conv2d(6, 16, 5)
        #输出:10x10x16(我的是106*106)
        
        #池化后,输出:5x5x16(我的是53*53)
        self.fc1 = nn.Linear(16 * 53 * 53, 120)
        self.fc2 = nn.Linear(120, 84)
        self.fc3 = nn.Linear(84, 2)

    def forward(self, x):
        x = self.pool(F.relu(self.conv1(x)))
        x = self.pool(F.relu(self.conv2(x)))
        x = x.view(-1, self.num_flat_features(x))
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x

    def num_flat_features(self, x):
        size = x.size()[1:]  # all dimensions except the batch dimension
        num_features = 1
        for s in size:
            num_features *= s
        return num_features
    

 


from torch import optim
#创建模型,部署gpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = LeNet().to(device)
#定义优化器
optimizer = optim.Adam(model.parameters(), lr=0.001)

 训练函数,这个随便找一个改一改就行

def train_runner(model, device, trainloader, optimizer, epoch):
    #训练模型, 启用 BatchNormalization 和 Dropout, 将BatchNormalization和Dropout置为True
    model.train()
    total = 0
    correct =0.0
 
 
    #enumerate迭代已加载的数据集,同时获取数据和数据下标
    for i, data in enumerate(trainloader, 0):
        inputs, labels = data
        #把模型部署到device上
        inputs, labels = inputs.to(device), labels.to(device)
        #初始化梯度
        optimizer.zero_grad()
        #保存训练结果
        outputs = model(inputs)
        #计算损失和
        #多分类情况通常使用cross_entropy(交叉熵损失函数), 而对于二分类问题, 通常使用sigmod
        loss = F.cross_entropy(outputs, labels)
        #获取最大概率的预测结果
        #dim=1表示返回每一行的最大值对应的列下标
        predict = outputs.argmax(dim=1)
        total += labels.size(0)
        correct += (predict == labels).sum().item()
        #反向传播
        loss.backward()
        #更新参数
        optimizer.step()
        if i % 100 == 0:
            #loss.item()表示当前loss的数值
            print("Train Epoch{} \t Loss: {:.6f}, accuracy: {:.6f}%".format(epoch, loss.item(), 100*(correct/total)))
            Loss.append(loss.item())
            Accuracy.append(correct/total)
    return loss.item(), correct/total
def test_runner(model, device, testloader):
    #模型验证, 必须要写, 否则只要有输入数据, 即使不训练, 它也会改变权值
    #因为调用eval()将不启用 BatchNormalization 和 Dropout, BatchNormalization和Dropout置为False
    model.eval()
    #统计模型正确率, 设置初始值
    correct = 0.0
    test_loss = 0.0
    total = 0
    #torch.no_grad将不会计算梯度, 也不会进行反向传播
    with torch.no_grad():
        for data, label in testloader:
            data, label = data.to(device), label.to(device)
            output = model(data)
            test_loss += F.cross_entropy(output, label.long()).item() #此处label续变为label.long() 否则会报错
            predict = output.argmax(dim=1)
            #计算正确数量
            total += label.size(0)
            correct += (predict == label).sum().item()
        #计算损失值
        print("test_avarage_loss: {:.6f}, accuracy: {:.6f}%".format(test_loss/total, 100*(correct/total)))

调用执行

#调用
epoch = 5
Loss = []
Accuracy = []
for epoch in range(1, epoch+1):
    loss, acc = train_runner(model, device, Traindata_loader, optimizer, epoch)
    Loss.append(loss)
    Accuracy.append(acc)
    test_runner(model, device, Valid_data_loader)
 
 
print('Finished Training')
plt.subplot(2,1,1)
plt.plot(Loss)
plt.title('Loss')
plt.show()
plt.subplot(2,1,2)
plt.plot(Accuracy)
plt.title('Accuracy')
plt.show()

 

运行结果

 kaggle代码直通车:https://www.kaggle.com/alexiuschao/lenet-ichallenge-pm/edit

 

 

 

 

 

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/735202.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-04-27
下一篇 2022-04-27

发表评论

登录后才能评论

评论列表(0条)

保存