迪克斯特拉(Dijkstra)算法:解决有权图中的最短路径(使用优先队列)问题;
最短路径树(Shortest Path Tree):所有节点的最短路径(相对于初始节点)组成的树。
算法原理
1.使用优先队列(PQ)按照(节点,距离)的方式存储(优先跟踪距离较小的节点);
2.初始化edgeTo和disTo数组,初始化PQ;
3.取出优先队列的第一个节点V,访问V已经被marked的邻接节点(disTo不为初始值),更新V的disTo和edgeTo信息;访问V未被marked的邻接节点W,更新W到source节点的距离(更新disTo数组),更新edgeTo,将W存入PQ。
4.重复步骤3直至PQ为空。
java代码
使用如下所示的有权图作为示例
import java.util.*;
public class Dijkstra {
private PriorityQueue<Pair> priQueue;
private int[] edgeTo; // 存储最短路径树中邻接的前一顶点
private int[] disTo; // 存储当前节点到source顶点的距离
private int MAX_VALUE = Integer.MAX_VALUE;
private class Pair {
/* 存储顶点index和与source之间的最短距离信息
*/
private int v;
private int dis;
Pair(int v, int dis) {
this.v = v;
this.dis = dis;
}
}
private class selfComparator implements Comparator<Pair> {
/* 自定义PQ中的Comparator
*/
@Override
public int compare(Pair o1, Pair o2) {
if (o1.dis < o2.dis) {
return -1;
} else if (o1.dis > o2.dis) {
return 1;
}
return 0;
}
}
Dijkstra(Graph testGraph, int sourceIdx) {
init(testGraph.V(), sourceIdx); // 初始化edgeTo、disTO和PQ;
while (priQueue.size() != 0) {
Pair cur = priQueue.remove();
visitAdjMarked(cur.v, testGraph);
visitAdjUnMarked(cur.v, testGraph);
}
}
private void init(int size, int s) {
/* PQ初始存储source节点;
edgeTo除source外设置为-1;
disTo除source外设置为MAX_VALUE;
*/
this.priQueue = new PriorityQueue<>(size, new selfComparator());
this.edgeTo = new int[size];
Arrays.fill(edgeTo, -1);
edgeTo[s] = s;
this.disTo = new int[size];
Arrays.fill(disTo, MAX_VALUE);
disTo[s] = 0;
Pair cur = new Pair(s, disTo[s]);
priQueue.add(cur);
}
private void visitAdjMarked(int idx, Graph graph) {
/* 访问idx被visit过的邻接顶点
*/
for (int adj : graph.adj(idx)) {
int newDis = disTo[adj] + graph.disTO(idx, adj);
if (disTo[adj] != MAX_VALUE && newDis < disTo[idx]) {
disTo[idx] = newDis;
edgeTo[idx] = adj;
}
}
}
private void visitAdjUnMarked(int idx, Graph graph) {
/* 访问idx未被visit的邻接顶点
*/
for (int adj : graph.adj(idx)) {
int newDis = disTo[idx] + graph.disTO(idx, adj);
if (disTo[adj] == MAX_VALUE) {
disTo[adj] = newDis;
edgeTo[adj] = idx;
Pair cur = new Pair(adj, newDis);
priQueue.add(cur);
}
}
}
public static void main(String[] args) {
Graph test = new Graph(7); // 按照实例初始化graph
test.addEdge(0, 1, 2);
test.addEdge(0, 2, 1);
test.addEdge(1, 2, 5);
test.addEdge(1, 3, 11);
test.addEdge(1, 4, 3);
test.addEdge(2, 4, 1);
test.addEdge(2, 5, 15);
test.addEdge(3, 4, 2);
test.addEdge(4, 5, 4);
test.addEdge(3, 6, 1);
test.addEdge(4, 6, 5);
test.addEdge(5, 6, 1);
Dijkstra a = new Dijkstra(test, 0);
List<Integer> route = new ArrayList<>();
int t = 5;
while (t != 0) {
route.add(t);
t = a.edgeTo[t];
}
System.out.print("到顶点5的最短路径为: 0"); // 验证最短路径是否正确
for (int i = route.size() - 1; i >= 0; i--) {
System.out.print(" ——> " + route.get(i));
}
}
}
Graph.java
import java.util.ArrayList;
import java.util.List;
public class Graph {
private List<Pair>[] ver;
private class Pair {
private int v;
private int weight;
Pair(int v, int weight) {
this.v = v;
this.weight = weight;
}
public int getV() {
return v;
}
public int getWeight() {
return weight;
}
}
Graph(int v) {
/* Create empty graph with v vertices
*/
ver = new List[v];
}
public void addEdge(int v, int w, int n) {
/* add an edge v-w with weight n
*/
if (ver[v] == null) {
ver[v] = new ArrayList<>();
}
if (ver[w] == null) {
ver[w] = new ArrayList<>();
}
Pair pairV = new Pair(v, n);
Pair pairW = new Pair(w, n);
ver[v].add(pairW);
ver[w].add(pairV);
}
Iterable<Integer> adj(int v) {
/* vertices adjacent to v
*/
List<Integer> res = new ArrayList<>();
for (Pair p : ver[v]) {
res.add(p.getV());
}
return res;
}
public int V() {
/* number of vertices
*/
return ver.length;
}
public int E() {
/* number of edges
*/
int res = 0;
for (int i = 0; i < ver.length; i++) {
res += ver[i].size();
}
return res / 2;
}
public int disTO(int v, int w) {
/* the weight between v-w
*/
int res = 0;
for (Pair p : ver[v]) {
if (p.getV() == w) {
res = p.getWeight();
}
}
return res;
}
public static void main(String[] args) {
Graph test = new Graph(7);
test.addEdge(0, 1, 2);
test.addEdge(0, 2, 1);
test.addEdge(1, 2, 5);
test.addEdge(1, 3, 11);
test.addEdge(1, 4, 3);
test.addEdge(2, 4, 1);
test.addEdge(2, 5, 15);
test.addEdge(3, 4, 2);
test.addEdge(4, 5, 4);
test.addEdge(3, 6, 1);
test.addEdge(4, 6, 5);
test.addEdge(5, 6, 1);
for (int i = 0; i < test.V(); i++) {
System.out.println("和" + i + "邻接的顶点为:" + test.adj(i));
}
System.out.println("顶点的数量:" + test.V()); // 顶点的数量应该为5
System.out.println("边的的数量:" + test.E()); // 边的数量应该为6
}
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)