目录
- A*算法的基本原理
- A*算法的应用场景
- A*算法的思想
- A*算法的定义
- A*算法的路径规划步骤
- A*算法路径搜索的图示演示
- A*算法的代码举例
- 1.定义一张定宽高的地图并设定起点和终点
- 2.开始路径规划
- 总结
A*算法的基本原理
将从应用场景、思想、基本的定义进行说明
一副地图中有坐标A和B,而A和B之间可能存在一些障碍,需要找到一条路径从A到B尽可能最短的安全路径。这样的问题就称作路径规划问题。
A*算法是处理路径规划问题的一种算法,其他的还有Dijkstra算法、贪心算法、广度优先(Bread First Search,BFS)和深度优先算法(Depth First Search,DFS)。BFS的思想就是以起点A为圆心,先搜索A周围的所有点,形成一个类似圆的搜索区域,再扩大搜索半径,直到终点B进入搜索区域内被找到;DFS的思想就是从起点A出发找沿着AB这条线的方向,并且离A点最远的点。
研究表明,A-star算法搜索效率较高。
A*算法的思想
A*算法利用估价的思想,其规划的过程如下:
- 在代遍历列表中(刚开始只有A点),我们在列表中查找一个估价(见估价公式)最小的点K
- 对点K进行一次广度优先搜索,也就是它移动到一次到的下一个坐标(上下左右、左上右上、左下右下)不包含已经遍历过的点和不能到达的点,将能查找的点添加到队列中,并将点K从队列中移除
- 重复1、2步骤直到到达B点,或者队列已经为空,表示没有路径可以到达点B
估价公式
F = G + H
G = 从起点A移动到下一移动位置的代价,沿着到达该位置而生成的路径。约定直行移动一次的代价是10,对角线的移动代价为14。
H = 从指定的位置移动到终点B的估价。计算从当前位置横向或者纵向移动到达终点所经过的距离(距离的计算见下面)乘10,忽略对角移动。
A*算法的定义
open list : 记录下所有被考虑来寻找最短路径的格子
close list : 记录下不会再被考虑的格子
Point(属性) : 是否为障碍物,父节点
用来计算代价的距离:欧拉距离和曼哈顿距离
- 欧拉距离:
(x1-x2)2+ (y1-y2)2 - 曼哈顿距离:
|x1-x2|+ |y1-y2|
A*算法的路径规划步骤
-
首先定义一张定宽高的地图(定义好Point点的地图,其中有Is_Wall属性,属性标记是否有障碍物)
-
设定好起始点和终点(起始点A,终点为B)
-
开始寻路
① 从起点A开始,把A作为一个等待检查的方格,放入到open list中(open list存放每一个等待检查的方格)
② 寻找起点A周围可以到达的方格(最多八个),将它们放入到open list,并设置它们的父节点为A
③ 从open list中删除起点A,并将A放入到close list中(close list存放的是不再需要检查的方格)
④ 计算open list中的方格的代价值(F)
⑤ 从open list中选择F最小的方格K,如果F一样,那么选择唯一一个G值最小的方格K,将其从open list中删除,放入close list中
⑥ 检查K所有邻近并且可达的方格
a)障碍物和close list中的方格不考虑
b)如果这些方格还不在open list里面,就将它们加入到open list,并且计算这些方格的F值,并设置父节点为K
c)如果K相邻的方格C已经在open list中,计算新的路径从A到方格C(即经过K的路径),判断是否需要更新:G值是否更低一点
如果新的G值更低,则修改父节点为方格K,重新计算F值,H值不需要改变,因为方格到达目标点的预计消耗是固定的。
如果新的G值比较高,则说明新的路径消耗更高,则值不做改变(G值不变也不更新)
⑦ 继续从open list中找出F值最小的,从open list中删除,添加到close list,再继续找出周围可以到达的方块,如此循环。
⑧ 结束判断:当open list中出现终点B时,说明路径已经找到;当open list中没有了数据,则说明没有合适路径。
A*算法路径搜索的图示演示
每一个方格的表示如下:
左上角代表F,即代价值;左下角代表G,右下角代表H,箭头指向当前节点的父节点
距离采用曼哈顿距离。
-
计算邻近点的代价,它们的父节点都是起点,找出最小估价,为右上角的方块。可以规定估价计算的顺序。
-
对上个步骤选出来的右上角的方块(紫色方块)的八个方向的坐标进行估值(已经估值的以及障碍不用计算),G值最小最后访问的点为父节点。
-
对上个步骤的紫色方块放入close list,即深绿色方块,重新寻找F值最小的方块。
-
重复上述步骤
-
循环结束
循环结束的条件就是,终点在open list中,即找到了终点或者open list中没有了值,这就说明没有找到路径,由此终点依次查找它们的父节点直到起点,将坐标点逆序,就是最短安全路径。
A*算法的代码举例
在了解了以上的原理与步骤后,开始组织程序
这个步骤要求定义一个定宽高的地图,并且在地图中要标明障碍物,利用一个二维数组来定义,并且需要定义是否有障碍
根据上面分析用的图,可以发现是一个10×10的方形区域
规定:
数字 | 0 | 1 | 3 | 4 | 6 |
---|---|---|---|---|---|
含义 | 障碍物 | 可以通行 | open list | close list | 最后的路径 |
代码如下:
#coding=utf-8
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
map_grid=[[1 for j in range(0,10)] for i in range(0,10)] #定义列表
map_grid = np.array(map_grid) #将列表转化为数组,因为只有数组才有维度的概念,方便切片
map_grid[4:8,4]=0 #障碍物
map_grid[2:4,6]=0
map_grid[4,2]=3 #起点
map_grid[6,8]=6 #终点
plt.imshow(map_grid,cmap=plt.cm.hot,interpolation='nearest',vmin=0,vmax=10) #绘制热力图
plt.colorbar()
plt.xlim(-1,10) #x轴的范围
plt.ylim(-1,10)
my_x_ticks = np.arange(0,11,1) #x轴标号的范围
my_y_ticks = np.arange(0,11,1)
plt.xticks(my_x_ticks)
plt.yticks(my_y_ticks)
plt.grid(True) #开启栅格 可以不开启
plt.show() #可视化
效果:
与上述分析的地图一致
将其打包成一个函数
def draw_effect(map_grid):
plt.imshow(map_grid, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10) # 绘制热力图
plt.colorbar()
plt.xlim(-1, 10) # x轴的范围
plt.ylim(-1, 10)
my_x_ticks = np.arange(0, 11, 1) # x轴标号的范围
my_y_ticks = np.arange(0, 11, 1)
plt.xticks(my_x_ticks)
plt.yticks(my_y_ticks)
plt.grid(True) # 开启栅格 可以不开启
plt.show() # 可视化
2.开始路径规划
在这个部分需要设置两个列表open_list,close_list,并且不断更新上面定义的二维数组中的值
①从起点A开始,把A作为一个等待检查的方格,放入open list中(open list存放每一个等待检查的方格)
open_list = [4,2]
G = 0
H = (abs(xn - x0)+abs(yn - y0))*10
F = G+H
open_list = {"x":4,"y":2,"Fvalue":F,"Gvalue":G,"Hvalue":H,"f_x":None,"f_y":None}
open_list = pd.DataFrame(open_list,index=[0])
#分别代表x,y,F值,G值,H值,父节点x,父节点y
②寻找起点A周围可以到达的方格,放入open_list中,并设置父节点,并计算F、G、H的值
,将此寻周围方格的过程打包为一个函数:如果节点K的邻节点在open_list,如果新的G值更小就更新G值,并重新计算F值,并更改K的父节点;否则不变
#②寻找起点A周围可以到达的方格,放入openlist中,并设置其父节点为A,并计算出F值(包装成一个函数来实现)
#close_list中不搜索,障碍不搜索,已经搜索过(在openlist里面)的不再搜索
def find_way(open_list,close_list,x0,y0):
#定义一个搜索顺序,右->右上->上->左上->左->左下->下->右下
m = close_list.iloc[close_list.index[(close_list['x'] == x0) & (close_list['y'] == y0)], 3].values.astype(int)
if y0 + 1 < 10 and map_grid[x0, y0 + 1] != 0 and map_grid[x0, y0 + 1] !=4:
x1 = x0
y1 = y0 + 1
G = 10 + m
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
if y0 + 1 < 10 and x0 + 1 < 10 and map_grid[x0 + 1, y0 + 1] != 0 and map_grid[x0+1, y0 + 1] !=4:
G = 14 + m
x1 = x0+1
y1 = y0 + 1
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
#pen_list.loc[len(open_list.index)] = [x1, y1, F, G, H, x0, y0]
if x0 + 1 < 10 and map_grid[x0 + 1, y0] != 0 and map_grid[x0 + 1, y0] !=4:
G = 10 + m
x1 = x0+1
y1 = y0
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
if x0 + 1 < 10 and y0 -1 >=0 and map_grid[x0 + 1, y0 - 1] != 0 and map_grid[x0 + 1, y0 - 1] !=4:
G = 14 + m
x1 = x0+1
y1 = y0-1
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
if y0 - 1 >= 0 and map_grid[x0, y0 - 1] != 0 and map_grid[x0, y0 - 1] !=4:
G = 10 + m
x1 = x0
y1 = y0 - 1
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
if y0 - 1 >= 0 and x0 - 1 >= 0 and map_grid[x0 - 1, y0 - 1] != 0 and map_grid[x0 - 1, y0 - 1] !=4:
G = 14 + m
x1 = x0-1
y1 = y0 - 1
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
if x0 - 1 >= 0 and map_grid[x0 - 1, y0] != 0 and map_grid[x0 - 1, y0] !=4:
G = 10 + m
x1 = x0-1
y1 = y0
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
if y0 + 1 < 10 and x0 - 1 >=0 and map_grid[x0 - 1, y0 + 1] != 0 and map_grid[x0 - 1, y0 + 1] !=4:
G = 14 + m
x1 = x0-1
y1 = y0 + 1
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
return open_list
③从open_list中删除起点A,并将A放入close_list中
#③从open list中删除起点A,并将A放入close list中(close list存放不需要再检查的方格)
insertRow = open_list.iloc[open_list.index[(open_list['x'] == x0) & (open_list['y'] == y0)]]
close_list = insertRow
close_list = pd.DataFrame(close_list)
# print(open_list) #此时openlist里面就有所有可以到达的方格
open_list = open_list.drop(open_list.index[(open_list['x'] == x0) & (open_list['y'] == y0)]) # 删除起点A
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
map_grid[x0, y0] = 4 # close_list
open_list = find_way(open_list,close_list,x0,y0) #调用该函数
open_list = pd.DataFrame(open_list)
④从open_list中选择F最小的方格K,如果F最小的方格不只一个,那么优先搜索G比较大的方格,将其从open_list中删除,放入close_list,如果G一样大,那么就只是搜索列表中的第一个。
#④从open_list中选择F最小的方格K,如果F最小的方格不只一个,那么优先搜索G比较大的方格,将其从open_list中删除,放入close_list
def move_min_to_close(open_list,close_list,x0,y0):
insertRow = open_list.loc[open_list.index[(open_list['Fvalue'] == open_list['Fvalue'].min())]]
insertRow = insertRow.loc[insertRow.index[(insertRow['Gvalue'] == insertRow['Gvalue'].min())]]
insertRow = insertRow.loc[[insertRow.index[0]]]
open_list = open_list.drop(insertRow.index) # 删除起点K
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
close_list = pd.concat([close_list, insertRow])
close_list = close_list.reset_index(drop=True) # 重新排列index(索引)
insertRow = insertRow.reset_index(drop=True) # 重新排列index(索引)
x0 = insertRow.iloc[0, 0]
y0 = insertRow.iloc[0, 1]
return [open_list,close_list,x0,y0]
⑤循环上述步骤,找出F最小的,找出周围可以到达的方块,从open list中删除,添加到close list;
循环结束的条件:当open list中出现终点B时,说明路径已经找到;当open list中没有了数据,则说明没有合适路径
#⑤循环上述步骤,找出F最小的,找出周围可以到达的方块,从open list中删除,添加到close list
#循环结束的条件:当open list中出现终点B时,说明路径已经找到;当open list中没有了数据,则说明没有合适路径
while (0 not in open_list['Hvalue'].values.astype(int) and pd.isnull(open_list.loc[0,'x'])==False):
[open_list, close_list,x0,y0] = move_min_to_close(open_list, close_list, x0, y0)
map_grid[x0, y0] = 4 # close_list
open_list = pd.DataFrame(open_list)
close_list = pd.DataFrame(close_list)
open_list = find_way(open_list, close_list, x0, y0)
#print(x0,y0)
⑥总结路径,并绘制图
当open list中出现终点B时,说明路径已经找到,绘制热力图,并打印路径节点;
当open list中没有了数据,则说明没有合适路径,绘制热力图,并发送‘No way’
if 0 in open_list['Hvalue'].values.astype(int):
print("find it")
list = [[xn,yn]]
[x,y] = open_list.loc[((open_list['x'].values == xn) & (open_list['y'].values == yn)), ['f_x','f_y']].values.astype(int)[0]
list.append([x,y])
map_grid[x, y] = 6 # 终点
while close_list.loc[((close_list['x'].values == x) & (close_list['y'].values == y)), 'f_x'].values[0]!=None:
[x,y] = close_list.loc[((close_list['x'].values == x) & (close_list['y'].values == y)), ['f_x','f_y']].values.astype(int)[0]
map_grid[x, y] = 6 # 终点
list.append([x,y])
draw_effect(map_grid)
print(list)
if(pd.isnull(open_list.loc[0,'x'])==True):
print("No way")
draw_effect(map_grid)
效果图:
总程序附录
#coding=utf-8
import numpy as np
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import warnings
warnings.filterwarnings("ignore")
#1.建立一个地图,明确障碍物和能够同行的路和起点、终点
map_grid=[[1 for j in range(0,10)] for i in range(0,10)] #定义列表
map_grid = np.array(map_grid) #将列表转化为数组,因为只有数组才有维度的概念,方便切片
map_grid[4:8,4]=0 #障碍物
map_grid[2:4,6]=0
map_grid[4,2]=1 #起点
map_grid[6,8]=6 #终点
x0 = 4
y0 = 2
xn = 6
yn = 8
i=0
#建图完成,其中map_grid里面就是每个方格的属性
def draw_effect(map_grid):
plt.imshow(map_grid, cmap=plt.cm.hot, interpolation='nearest', vmin=0, vmax=10) # 绘制热力图
plt.colorbar()
plt.xlim(-1, 10) # x轴的范围
plt.ylim(-1, 10)
my_x_ticks = np.arange(0, 11, 1) # x轴标号的范围
my_y_ticks = np.arange(0, 11, 1)
plt.xticks(my_x_ticks)
plt.yticks(my_y_ticks)
plt.grid(True) # 开启栅格 可以不开启
plt.show() # 可视化
#2.开始寻路
#①从起点A开始,把A作为一个等待检查的方格,放入open list中(存放每一个等待检查的方格)
open_list = [4,2]
G = 0
H = (abs(xn - x0)+abs(yn - y0))*10
F = G+H
open_list = {"x":4,"y":2,"Fvalue":F,"Gvalue":G,"Hvalue":H,"f_x":None,"f_y":None}
open_list = pd.DataFrame(open_list,index=[0])
#分别代表x,y,F值,G值,H值,父节点x,父节点y
#print(open_list.iloc[open_list.index[(open_list['x'] == x0) & (open_list['y'] == y0)], 3])
#②寻找起点A周围可以到达的方格,放入openlist中,并设置其父节点为A,并计算出F值(包装成一个函数来实现)
#close_list中不搜索,障碍不搜索,已经搜索过(在openlist里面)的不再搜索
def find_way(open_list,close_list,x0,y0):
#定义一个搜索顺序,右->右上->上->左上->左->左下->下->右下
m = close_list.iloc[close_list.index[(close_list['x'] == x0) & (close_list['y'] == y0)], 3].values.astype(int)
if y0 + 1 < 10 and map_grid[x0, y0 + 1] != 0 and map_grid[x0, y0 + 1] !=4:
x1 = x0
y1 = y0 + 1
G = 10 + m
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
if y0 + 1 < 10 and x0 + 1 < 10 and map_grid[x0 + 1, y0 + 1] != 0 and map_grid[x0+1, y0 + 1] !=4:
G = 14 + m
x1 = x0+1
y1 = y0 + 1
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
#pen_list.loc[len(open_list.index)] = [x1, y1, F, G, H, x0, y0]
if x0 + 1 < 10 and map_grid[x0 + 1, y0] != 0 and map_grid[x0 + 1, y0] !=4:
G = 10 + m
x1 = x0+1
y1 = y0
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
if x0 + 1 < 10 and y0 -1 >=0 and map_grid[x0 + 1, y0 - 1] != 0 and map_grid[x0 + 1, y0 - 1] !=4:
G = 14 + m
x1 = x0+1
y1 = y0-1
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
if y0 - 1 >= 0 and map_grid[x0, y0 - 1] != 0 and map_grid[x0, y0 - 1] !=4:
G = 10 + m
x1 = x0
y1 = y0 - 1
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
if y0 - 1 >= 0 and x0 - 1 >= 0 and map_grid[x0 - 1, y0 - 1] != 0 and map_grid[x0 - 1, y0 - 1] !=4:
G = 14 + m
x1 = x0-1
y1 = y0 - 1
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
if x0 - 1 >= 0 and map_grid[x0 - 1, y0] != 0 and map_grid[x0 - 1, y0] !=4:
G = 10 + m
x1 = x0-1
y1 = y0
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
if y0 + 1 < 10 and x0 - 1 >=0 and map_grid[x0 - 1, y0 + 1] != 0 and map_grid[x0 - 1, y0 + 1] !=4:
G = 14 + m
x1 = x0-1
y1 = y0 + 1
H = (abs(xn - x1) + abs(yn - y1)) * 10
F = G + H
if map_grid[x1, y1] == 3:
n = open_list.iloc[open_list.index[(open_list['x'] == x1) & (open_list['y'] == y1)], 3].values.astype(int)
if G < n:
# print(len(open_list.index))
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Gvalue'] = G
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'Fvalue'] = F
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = x0
open_list.loc[(open_list['x'] == x1) & (open_list['y'] == y1), 'f_x'] = y0
else:
insertRow = {"x": x1, "y": y1, "Fvalue": F, "Gvalue": G, "Hvalue": H, "f_x": x0, "f_y": y0}
insertRow = pd.DataFrame(insertRow, index=[0])
# print(len(open_list.index))
open_list = pd.concat([open_list, insertRow])
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
# open_list.loc[len(open_list.index)]=[x1,y1,F,G,H,x0,y0]
map_grid[x1, y1] = 3 # openlist里面的坐标所对应的值设置为3,方便绘图
return open_list
#③从open list中删除起点A,并将A放入close list中(close list存放不需要再检查的方格)
insertRow = open_list.iloc[open_list.index[(open_list['x'] == x0) & (open_list['y'] == y0)]]
close_list = insertRow
close_list = pd.DataFrame(close_list)
# print(open_list) #此时openlist里面就有所有可以到达的方格
open_list = open_list.drop(open_list.index[(open_list['x'] == x0) & (open_list['y'] == y0)]) # 删除起点A
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
map_grid[x0, y0] = 4 # close_list
open_list = find_way(open_list,close_list,x0,y0) #调用该函数
open_list = pd.DataFrame(open_list)
#④从open_list中选择F最小的方格K,如果F最小的方格不只一个,那么优先搜索G比较大的方格,将其从open_list中删除,放入close_list
def move_min_to_close(open_list,close_list,x0,y0):
insertRow = open_list.loc[open_list.index[(open_list['Fvalue'] == open_list['Fvalue'].min())]]
insertRow = insertRow.loc[insertRow.index[(insertRow['Gvalue'] == insertRow['Gvalue'].min())]]
insertRow = insertRow.loc[[insertRow.index[0]]]
open_list = open_list.drop(insertRow.index) # 删除起点K
open_list = open_list.reset_index(drop=True) # 重新排列index(索引)
close_list = pd.concat([close_list, insertRow])
close_list = close_list.reset_index(drop=True) # 重新排列index(索引)
insertRow = insertRow.reset_index(drop=True) # 重新排列index(索引)
x0 = insertRow.iloc[0, 0]
y0 = insertRow.iloc[0, 1]
return [open_list,close_list,x0,y0]
#print(open_list)
#⑤循环上述步骤,找出F最小的,找出周围可以到达的方块,从open list中删除,添加到close list
#循环结束的条件:当open list中出现终点B时,说明路径已经找到;当open list中没有了数据,则说明没有合适路径
while (0 not in open_list['Hvalue'].values.astype(int) and pd.isnull(open_list.loc[0,'x'])==False):
[open_list, close_list,x0,y0] = move_min_to_close(open_list, close_list, x0, y0)
map_grid[x0, y0] = 4 # close_list
open_list = pd.DataFrame(open_list)
close_list = pd.DataFrame(close_list)
open_list = find_way(open_list, close_list, x0, y0)
#print(x0,y0)
if 0 in open_list['Hvalue'].values.astype(int):
print("find it")
list = [[xn,yn]]
[x,y] = open_list.loc[((open_list['x'].values == xn) & (open_list['y'].values == yn)), ['f_x','f_y']].values.astype(int)[0]
list.append([x,y])
map_grid[x, y] = 6 # 终点
while close_list.loc[((close_list['x'].values == x) & (close_list['y'].values == y)), 'f_x'].values[0]!=None:
[x,y] = close_list.loc[((close_list['x'].values == x) & (close_list['y'].values == y)), ['f_x','f_y']].values.astype(int)[0]
map_grid[x, y] = 6 # 终点
list.append([x,y])
draw_effect(map_grid)
print(list)
if(pd.isnull(open_list.loc[0,'x'])==True):
print("No way")
draw_effect(map_grid)
总结
程序是自己一句一句写的,没有参考别人的程序,看着有点复杂,其实只要花时间读一下代码,很容易理解,适合初学者。但总算把A*捋清楚了,也学会了python里面list,dataframe,array的索引和用法。
接下来准备写dijkstra算法。
参考文献:
- python栅格地图上路径规划作图
- A*算法(超级详细讲解,附有举例的详细手写步骤)
- 寻路算法——A*算法详解并附带实现代码
- A*算法详解一看就懂(python)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)