目录
1. 设计findcontentchildren(greedy, size)来判断出饼干可以满足多少小孩:
2. 设计carpooling(trips, capacity)判断是否一个车能接送所有旅客:
3. 旅游路线问题
4. 背包问题
5. 电台问题
1. 设计findcontentchildren(greedy, size)来判断出饼干可以满足多少小孩:
- greedy为贪婪指数列表,列出每个小孩期待的饼干大小;如:greedy[1, 2]为第一个小孩期待饼干大小为1,第二个小孩期待饼干大小为2;
- size为饼干大小列表;如:size[1, 2]为第一块饼干大小为1,第二块饼干大小为2;
def findcontentchildren(greedy, size):
greedy.sort()
size.sort()
index = 0
ptr = 0
for g in greedy:
while indexsize[index]:
index += 1
if index
代码解析:
这个程序的设计方式就是先对greedy和size列表排序,然后使用g遍历greedy列表和size列表作比较,如果size[index]小于g,且index小于size的长度,index必须加1,相当于指标往后移。当找到size[index]大于g,表示可以满足一个小孩,就可以离开while循环了;
2. 设计carpooling(trips, capacity)判断是否一个车能接送所有旅客:
- trips = [num_passengers, start_location, end_location]:num_passengers是旅客数量, start_location是上车站, end_location是下车站;
- capacity是车辆的容量;
def carpooling(trips, capacity):
car = []
for n, start, end in trips:
car.append((start, n))
car.append((end, -n))
car.sort()
people = 0
for c in car:
people += c[1]
if people>capacity:
return False
return True
print(carpooling([[2,1,6],[3,3,8]],4))
print(carpooling([[2,1,6],[3,3,8]],5))
print(carpooling([[3,2,6],[3,6,9],[8,3,9]],11))
3. 旅游路线问题
有一个旅游者想一次性游览这6个城市,请设计贪心算法,输入任意起点城市,都能得出最适当的拜访路线和最后的旅行距离:
def greedy(graph, cities, start):
visited = []
visited.append(start)
start_i = cities.index(start)
distance = 0
for outer in range(len(cities)-1):
graph[start_i][start_i] = INF
min_dist = min(graph[start_i])
distance += min_dist
end_i = graph[start_i].index(min_dist)
visited.append(cities[end_i])
for inner in range(len(graph)):
graph[start_i][inner] = INF
graph[inner][start_i] = INF
start_i = end_i
return distance,visited
INF = 9999
cities = ['北京','天津','西安','武汉','上海','广州']
graph = [[ 0, 132,1120,1200,1463,1888],
[ 132, 0,1182,1367, 957,2100],
[1120,1182, 0,1035,1509,1950],
[1200,1367,1035, 0, 686,1030],
[1463, 957,1509, 686, 0,1705],
[1888,2100,1950,1030,1705, 0]]
start = input('出发城市:')
dist, visited = greedy(graph, cities, start)
print('旅游顺序:',visited)
print('旅游距离:',dist)
4. 背包问题
一个人有一个可以装10千克货物的背包,他到一个市场想最大价值的带走他想要的东西,请你用贪心算法帮他:
- '手表':(1500,1),
- '手机':(3500,7),
- '平板':(3800,5),
- '电脑':(4000,8),
- '相机':(2000,1),
- '眼镜':(1200,1.2),
- '耳机':(1000,1)
def greedy(things):
length = len(things)
things_list = []
things_list.append(things[length-1])
weights = things[length-1][1][1]
for i in range(length-1, -1, -1):
if things[i][1][1] +weights <= max_weight:
things_list.append(things[i])
weights += things[i][1][1]
return things_list
things = {'手表':(1500,1),
'手机':(3500,7),
'平板':(3800,5),
'电脑':(4000,8),
'相机':(2000,1),
'眼镜':(1200,1.2),
'耳机':(1000,1)}
max_weight = 10
th = sorted(things.items(), key = lambda item:(item[1][0]/item[1][1]))
t = greedy(th)
print('贪婪选择下的商品如下:')
for i in range(len(t)):
print(*t[i])
5. 电台问题
某组织想要通过电台进行全国大部分省份的通信,而电台有地域性限制,且有一定成本,所以想用尽可能少的电台进行覆盖:
- 电台1:湖北,安徽,江西;
- 电台2:河南,湖北,湖南;
- 电台3:浙江,安徽,江苏;
- 电台4:安徽,山东,江西;
- 电台5:江苏,天津,北京;
- 电台6:广西,广东,福建;
- 电台7:甘肃,山西,江西,山东;
def greedy(radios, cities):
greedy_radios = set()
while cities:
greedy_choose = None
city_cover = set()
for radio, area in radios.items():
cover = cities & area
if len(cover) > len(city_cover):
greedy_choose =radio
city_cover = cover
cities -= city_cover
greedy_radios.add(greedy_choose)
return greedy_radios
cities = set(['北京','天津','湖北',
'安徽','江西','河南',
'湖南','浙江','江苏',
'山东','江西','广西',
'广东','福建','甘肃'])
radios ={}
radios['电台1']=set(['湖北','安徽','江西'])
radios['电台2']=set(['河南','湖北','湖南'])
radios['电台3']=set(['广西','广东','福建'])
radios['电台4']=set(['浙江','安徽','江苏'])
radios['电台5']=set(['安徽','山东','江西'])
radios['电台6']=set(['江苏','天津','北京'])
radios['电台7']=set(['甘肃','山西','江西','山东'])
print(greedy(radios, cities))
算法技巧专栏
https://blog.csdn.net/weixin_53919192/category_11761989.htmlhttps://blog.csdn.net/weixin_53919192/category_11761989.html
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)