最近和很多企业的CIO/CTO、以及IT部门的各级主管交流数字化转型时,他们都对数字化的未来充满了热情和憧憬。
然而我们看到的现状是,大多数企业IT部门的职能还停留在“业务支持”的程度,是为业务部门提供IT系统支持的组织。这也造成了传统企业中IT部门的员工,更多的是承担甲方项目经理的角色。这种以项目为导向的方式,使得员工往往一个项目上线后,就会投入到下一个项目的工作中。员工在业务或专业能力上很难得到持续的积累和沉淀,结果就是员工的积极性和创造力逐渐被消磨,整个IT部门的生产力和创新氛围也受到很大影响。
与此同时,CIO/CTO面前有成百上千个需要用⾼昂的成本进⾏支持和维护的遗留系统,尽管他们愿意响应快速变化的市场需求,但在项目周期与成本压力面前,却又显得力不从心。
数字化转型势在必行。在推进整个企业的数字化转型过程中,对以下几个问题的探寻能解答许多管理者们的疑惑。
业务架构与IT架构的关系是什么
业务架构可从企业战略出发,按照企业战略设计业务及业务过程。业务过程是需要业务能力支撑的,从战略到业务,再到对业务能力的需要,就形成了支撑企业战略实现的能力布局——将这个布局理解为业务架构,它是企业为客户创造价值的设计过程。
业务架构设计会尽可能地追求以更为集约的能力实现更为多变的业务或服务,这其实也是中台战略追求的目标。因此,中台战略实际上也可以归结为一种业务架构设计。
业务架构设计完成后,“灵魂”就诞生了,IT架构则是根据“灵魂”的需要来设计“容器”。IT架构通常会分为应用架构和技术架构(近些年随着大数据的发展,数据架构的地位直线上升)。
应用架构重点关注是功能布局,与业务架构的关系非常紧密,可以称其为业务架构设计的“紧后工序”。技术架构主要关注分层结构,对于大型业务系统来说,一个逻辑分层可能需要通过多种平台才能实现。技术架构与业务架构的关系并不像应用架构那么直接,主要是通过对业务特征、业务量等多种因素综合考虑分层的合理性和平台选型。
作为“灵魂“的”容器“,IT架构中的数据架构和应用架构与业务架构的关系是最为紧密的。 将”灵魂“注入”容器“是技术人员的重要工作,而能否顺利注入,让“灵魂”有个适宜的居所,则有赖于技术人员对“灵魂”的充分认知 。
企业的数据中台的价值
在经分的年代,数据仓库推倒重来了几遍,构建了很多的专题项目,经历了上万次取数,制作了成百上千的报表,但在支撑了当初的业务发展的同时,到底给如今的企业留下了多少资产?
也许是培养了一代又一代的数据人员,如今有的成为数据专家,有的转型业务人员,有的晋升为领导,有的离职踏上新的岗位,为企业服务的合作伙伴也由此获得快速成长,很多也成了庞然大物。
但这个够吗?
显然不够,但很多企业现有的数据历史底蕴就是这些了吧,老系统迟早要倒,新系统还是要建,但老系统的好基因却很难留下来,这一代的数据仓库与上一代数据仓库一般不能说是演进,而是重来,或者是靠着个人的经验撑起整片天,又如10年前笔者用逻辑回归实现的飞信潜在模型,现在只能到历史的PPT中去寻找其踪影了,反应了同样的道理。
想向新人介绍一下历史,囧于历史没什么好说的,也没什么好展示的,说明了传承的不够,曾经沧海难为水,其实可以做的更好。
那么问题的核心在哪里?
答案就是数据中台,今天就来谈一谈。
广义的数据中台包括了数据技术,比如对海量数据进行采集、计算、存储、加工的一系列技术集合,对于大多企业,这些能力是能够买到的,因此无所谓积淀,要积淀大多也是别人的积淀,而不是企业的,当然自主研发的除外,比如阿里的ODPS等。
笔者提的数据中台要更往上走,包括数据模型,算法服务,数据产品,数据管理等等,这些服务跟企业的业务有较强的关联性,是这个企业独有的且能复用的,比如企业自建的2000个基础模型,300个融合模型,5万个标签,这些就是笔者说的中台,它是企业业务和数据的沉淀,其不仅能降低重复建设,减少烟囱式协作的成本,也是差异化竞争优势所在。
为什么数据中台如此重要呢,笔者概括大致有以下四个原因:
1、回归服务的本质-数据重用
今天的浙江移动已经将2000个基础模型作为所有数据服务开发的基础,这些基础模型做到了“书同文,车同轨”,无论应用的数据模型有多复杂,总是能溯源到2000张基础表,这奠定了数据核对和认知的基础,最大程度的避免了“重复数据抽取和维护带来的成本浪费。”
曾经企业的数据抽取就有多份,报表一份,数据仓库一份,地市集市一份,无论是抽取压力、维护难度及数据一致性要求都很高。
同时,统一的基础模型将相关业务领域的数据做了很好的汇聚,解决了数据互通的诉求,这点的意义巨大,谁都知道数据1+1>2的意思。
2、数据中台需要不断的业务滋养
在企业内,无论是专题、报表或取数,当前基本是烟囱式数据生产模式或者是项目制建设方式,必然导致数据知识得不到沉淀和持续发展,从而造成模型不能真正成为可重用的组件,无法支撑数据分析的快速响应和创新。
究其原因是模型建设往往是项目式的建设方式,一旦项目结束,在面对业务提出更多需求时,项目模型团队可能已经撤离了,或者考核指标早已经随着项目结束,模型提供者在主观上没有太大的积极性去满足新的需求,如果当初模型的扩展性设计的不好,或者时间太紧,或者系统稳定的需要,往往导致有心无力满足新的需求,结果是数据模型无法再扩展,成为事实上稳定的但无用的模型。
其实,业务最不需要的就是模型的稳定,一个数据模型如果一味追求稳定不变,一定程度就是故步自封,这样的做法必然导致其他的新的类似的数据模型产生,当越来越多的模型都采用自建的方式满足需求时,意味着老的数据模型就可能要离开历史舞台了,而留下的是割裂的成千上万的模型,也就失去了模型知识沉淀的可能,曾经做过一张几百个字段的万能宽表,由于太大后来就没人敢去动它,随着新的业务不断增加,这张宽表的价值却越来越低直至退出历史舞台。
数据模型不需要“稳定”,而需要不断的滋养,只有在滋养中才能从最初的字段单一到逐渐成长为企业最为宝贵的模型资产。
其实标签也一样,做过不少异动标签或离网模型,曾经效果不错,随着公司转型流量经营,原来以语音异动判断为主的这类标签开始难以适应变化,但后续已经没人能改得动它,这个标签也就退出了历史舞台,退出的可不仅仅是一个标签,这个标签承载的所有的既有经验也就被废弃掉了,想想这些标签当初花了多大的代价做成就会感觉非常可惜。
再以报表为例,企业报表成千上万的原因往往也是没有沉淀造成的,针对一个业务报表,由于不同的业务人员提出的角度不同,会幻化出成百上千的报表,如果有报表中台的概念,就可以提出一些基准报表的原则,比如一个业务一张报表,已经有的业务报表只允许修改而不允许新增,自然老报表就会由于新的需求而不断完善,从而能演化成企业的基础报表目录,否则就是一堆报表的堆砌,后续的数据一致性问题层出不穷,管理成本急剧增加,人力投入越来越多,这样的事情在每个企业都在发生。
3、数据中台是培育业务创新的土壤
企业的数据创新一定要站在巨人的肩膀上,即从数据中台开始,不能总是从基础做起,数据中台是数据创新效率的保障。
搞过机器学习的都知道,没有好的规整数据,数据准备的过程极其冗长,这也是数据仓库模型的一个核心价值所在,比如运营商中要获取3个月的ARPU数据,如果没有融合模型的支撑,得自己从账单一层层汇总及关联,速度可想而知。
很多合作伙伴的数据科学家到一个企业水土不服,除了业务上不熟悉外,往往还面临着数据准备的困境,取数的高难度导致他难以快速的去验证想法,企业想借助外力去搞数据创新有时成了一厢情愿。
标签也一样,企业打造标签可并不仅仅是做几个标签那么简单,它需要打造的是一个标签服务平台,要能最大限度的规范标签的格式,接入方式,组合方式,调用方式等等,只有这样,基于标签的二次快速创新才有可能,企业每发布一个新的标签,就意味着新增了一种能力,这才是数据知识的真正传承。
比如当常驻地模型发布成为标签平台的一个标签后,以后凡是涉及到常驻地判断的都可以直接调用,这极大降低了关于用户位置数据准备的成本。
在如今的互联网时代,企业都在全力谋求转型,转型的关键是要具备跟互联网公司一样的快速创新能力,大数据是其中一个核心驱动力,但拥有大数据还是不够的,数据中台的能力往往最终决定速度,拥有速度意味着试错成本很低,意味着可以再来一次。
4、数据中台是人才成长的摇篮
记得笔者刚进企业的时候,要获得成长一是靠人带,二是找人问,三是自己登陆各种系统去看源代码,这样的学习比较支离破碎,其实很难了解全貌,无法知道什么东西对于企业是最重要的,获得的文档资料也往往也是过了时的。
现在有了数据中台,很多成长问题就能解决,有了基础模型,新人可以系统的学习企业有哪些基本数据能力,O域数据的增加更是让其有更广阔的视野,有了融合模型,新人可以知道有哪些主题域,从主题域切入去全局的理解公司的业务概念,有了标签库,新人可以获得前人的所有智慧结晶,有了数据管理平台,新人能清晰的追溯数据、标签和应用的来龙去脉,所有的知识都是在线的,最新的,意味着新人的高起点。
更为关键的是,数据中台让新人摆脱了在起步阶段对于导师的过渡依赖,能快速的融入团队,在前人的基础上进行创新。
数据中台天然的统一,集成的特性,有可能让新人打破点线的束缚,快速构筑起自己的知识体系,成为企业数据领域的专家。
当然,数据中台的建立不是一蹴而就的,每个企业都应该基于实际打造独有的中台能力,在这个过程中,需要遵循一些原则:
首先,企业的组织架构及机制需要顺势而变,比如以前负责数据的部门或团队往往缺乏话语权,面对业务需求往往是被动的接受的角色,这让一切数据中台的想法化为泡影,需要为数据中台团队授权。
其次,要改变工作方式,现在很多企业的数据团队的主要工作内容就是项目管理、需求管理等等,当一个项目完成后又投入到下一个项目,做好一个需求后又开始负责下一个需求,这样的工作确实非常锻炼人的组织、协调能力,但这样能力的提升与工作时间的长短并不是呈线性增长的,虽然增加了项目和需求管理经验,但并不能在某一个专业领域得到知识和经验的沉淀,随着时间的流逝,越来越多的人会失去最初的工作积极性和创造性,事实上,数据人员只有深入的研究业务、数据和模型,端到端的去实践,打造出数据中台,才是最大的价值创造,才能使得持续创新成为可能。
第三,数据中台的团队要从传统的支撑角色逐步向运营角色转变,不仅在数据上,在业务上也要努力赶超业务人员,中台人员要逐步建立起对于业务的话语权,不仅仅是接受需求的角色,更要能提出合理的建议,能为业务带来新的增长点,比如精确营销。
DT时代,接下来整个社会会进入开放共享的时代,致力于大数据变现的企业最大的价值就是将这些核心数据能力进行对外开放的运营,到那个时代,数据中台将成为企业最为宝贵的资产。
从个人的角度讲,将自己的贡献幻化为中台能力,能够持续的为公司创造价值,这是值得骄傲的事情。
前几天参与了公司组织的”引航计划“培训。
公司TOP分享了,”新零售战略漫谈“。
品牌事业部TOP分享了,"品牌管理,企业变革对于管理者的挑战与机遇”,如智能智造对品牌的挑战与机遇。
两位TOP分享的都是技术变革所引起的企业变革的话题。
让我印象特别深刻的是两位TOP对于变革都是积极拥抱的,变革的第一性原理都是
"一切以顾客为中心,以满足顾客需求为目的”。
这让我陷入深思,
企业的核心竞争力是 ”快速响应“、”挖掘“、”引领“顾客的需求,一切以"顾客(用户)需求"为中心。
哪么信息系统建设的原则也是必须支撑企业的核心竞争力来搭建。
目前我们公司搭建的信息系统如何
能否支撑未来企业的高速发展
如果需要变革或优化,方向又是什么?
工业时代,信息化建设一般以"前台+后台"的平台化架构来搭建,所有的软件系统都是基于这种方向来规划、设计。
一、前台、后台系统的定义
前台,每个前台系统就是一个用户的触点,是用户直接使用或交互的系统。
例如,网站、手机APP、微信公众号等都属于前台范畴。
后台,每个后台系统管理企业的核心资源(计算+数据),以规范处理企业底层核心资源和企业的核心可追溯单据为主要目的(采购、销售、财务订单等),它们的变更需要严瑾的申报审批流程和更高级别的测试部署要求,天然导致它们变更频率低、变化成本高、变化周期长。
例如,财务系统、OMS系统、客户管理系统、仓储物流管理系统等。
基础设施、计算平台作为企业的核心计算资源,也属于后台的一部分。
前台、后台系统来源有两种
1、花大价钱外采,实施,需要每年支付大量的服务费,定制化困难。
2、花大价钱自建,一身的补丁,年久失修,同样变更困难。
有人会说,现有的版本较低,可重新搭建新的后台系统。
但是由于前、后台系统天然的特性,重建也只是推倒了一个“烟囱”,只是新建一个差不多的“烟囱”,建的越多,后期的运维会越艰难(天港城、DRP、AFS、FMS等)。
二、前台+后台系统框架的僵局
"前台系统"是用户直接使用或交互的系统,而企业的核心竞争力是 ”快速响应用户的需求"。
所以前台系统为 用户而生 ,需要快速的创新迭代、越快越好。
“后台系统"的目标,主要是为了实现企业资源的数字化管理,解决企业管理的效率问题,而不是完全为了服务于前台系统。
后台系统往往是稳定至上,越稳定越好。
前台系统是需要快而美,快速迭代。
这样前台、后台系统的的配速不区配。
而企业会不断发展,顾客(用户)需求的不断变化,后台修改的“成本”、“危险”也只会越来越高。
后台系统对于变化,天然会选择保持稳定性与可靠性,响应速度会越来越慢,甚至无法响应,或者将很多的业务逻辑不断的加到前台系统,造成前台系统不断膨胀,渐渐拖垮前台系统,同时用户的满意度下降,企业的竞争力自然也随之下降。
这样前台需要的快而美、后台系统的稳定可靠天生就陷入僵局 。
我们公司是不是也慢慢体现这种特点
顾客需求多、变动频繁,而信息平台的响应速度也是越来越慢 或直接说NO
哪有没有解决之道?或有没有路径来处理?
移动互联网时代的弄潮儿,国内毫无疑问是阿里、腾讯、华为等。
其中阿里从最初的淘宝、天猫、支付宝、蚂蚁金服、阿里云等,业务不断扩展,阿里的技术团队在业务的不断摧化下,经过多年的努力,将自己的技术和业务能力沉淀出一套综合平台(大中台、小前台的系统框架),具备了对前台业务变化及创新的快速享应能力。
阿里的信息平台中,引入了中台的业务架构。
中台业务架构是将一些基础公用的业务服务抽像出来,形成 共享平台 ,提供给所有的前台业务使用。
一、中台定义
中台为前台而生,目的就是更好的服务前台规模化建设,更好的响应服务引领用户。
前台系统中的通用业务能力"沉降"到中台,为前台减肥,恢复前台的响应力。
后台系统中需要频繁变化或是需要被前台直接使用的业务能力“提取”到中台层,赋予这些业务能力更强的灵活度和更低的变更成本。
中台是在“前台”与“后台”之间添加一组变速轮,将前台、后台的速率进行区配,在”前台“与”后台“之间搭建桥梁,易于前台使用,将后台资源顺滑流向用户,响应用户。
中台作为桥梁,链接了用户与企业核心资源,可以将业务沉淀在中间层,覆予这些能力更强的灵活度和更低的变更成本,为前台提供强大的能力炮火。
二、中台的核心价值
1、以用户为核心的持续化创新能力,是中台建设的核心目标,业务响应能力和创新能力,是互联网时代企业综合能力的核心体现。
2、中台建设根本上是为了解决企业响应慢困境, 弥补顾客需求快速变化的前台和稳定可靠驱动变化周期相对较慢的后台之间的矛盾,沉淀业务能力,打通并顺滑链接前台需求与后台资源,帮助企业不断提升用户响应速度。
在未来企业信息化平台的建设过程中,我们需要建设自己的中台层。
公司现建立了比较强大的信息化平台,如SAP、OMS、CRM、WMS、SRM、POS、OA等。
也建立了较强大的系统流程运维、研发团队,有较强的软件项目开发、运维经验。
随着新技术发展(如移动互联网、物联网等)、顾客生活方式的变化、人工材料成本上升、个性化需求等各种因素,公司战略也会变动,相应的信息化系统为了支撑业务的变化也会调整。
如最近公司"新品牌"的创建,就是为了适应这种变化,对于这种变化,信息化平台如何变化,我的思考如下(仅是我个人思考,有可能全是错的)
新品牌
一、顾客定位,相对于现有品牌顾客会 年轻、更爱美、有个性、有相应的经济能力,是随着互联网发展成长起来的群体。
二、产品定位,相对于现有品牌价位会偏低,多样化、年青化、舒适。
三、销售渠道,线上线下融合,购物更方便、快捷、售前、售后体验好。
四、供应链渠道快捷,可直接采购、或外协加工,供应链需敏捷反应。
信息系统规划及方向
顾客年青化、线上线下融合、敏捷供应链,基于互联网时代的特性,信息系统的搭建也需要基于"共享服务中心”的IT架构来实施、搭建。
“共享服务中心”的IT架构。
一、可以避免重复功能的建设、维护带来的成本浪费。
二、可以最大程度避免需要打通不同系统间实现业务交互带来的集成协作成本(如SAP、OMS、WMS、POS、CRM等)。
三、业务可持续沉淀、形成可重用的服务中心,为业务的快速发展、创新带来价值。
四、可以让企业具备跟互联网企业一样的业务快速创新、试错的能力。
五、信息中心,往核心业务和数据运营团队进化,更快、更好的支持业务发展,培养即精通业务,又熟悉技术的复合型人才。
2019年或之后的很长一段时间,我们应搭建相应“共享服务服心”
一、统一库存服务中心
统一库存共享和分配的过程,提高库存的管理能力,实现全渠道库存的可视、可控。
二、统一会员服务中心
统一各个业务线分散的用户体系,统一用户数据、存储及服务接口。
三、统一商品服务中心
商品是所用用户、系统的入口,对数据的质量要求很高,高质量的数据是所有业务的基础
四、统一的交易服务中心
交易业务领域的服务中心,包括交易流程、订单管理、结算、营销、评价等。
五、统一的物流服务中心等一系列的中心
服务中心构建好后,相应的“全渠道销售平台”信息平台,自然也水到渠成。
共享服务中心的IT架构,在前台、后台系统之间搭建中台,会更快、更好的响应顾客需求、提升组织效率。
同时共享服务中心的搭建,对于研发组织、研发流程有新的优化与要求。
应避免或淘汰目前的“项目制”的实施SOA的误区。
对于寻求数字化转型的企业而言,要如何管理公司的数据资源,让数据产生价值,有效服务前端业务呢?在2019年,呼声最高的答案无疑是“数据中台”。
一、什么是数据中台?
(一)前台、中台与后台
前台,即指由各类前台系统组成的前端平台。每个前台系统就是一个用户触点,即企业的最终用户直接使用或交互的系统,是企业与最终用户的交点。
后台,即指由后台系统组成的后端平台。每个后台系统一般管理了企业的一类核心资源(数据计算),例如财务系统,产品系统,客户管理系统,仓库物流管理系统等,这类系统构成了企业的后台。
前台与后台就像是两个不同转速的齿轮,前台由于要快速响应前端用户的需求,讲究的是快速创新迭代,所以要求转速越快越好;而后台由于面对的是相对稳定的后端资源,而且系统陈旧复杂,甚至还受到法律法规等相关合规约束,所以往往是稳定至上,越稳定越好,转速也自然是越慢越好。
随着企业务的不断发展,这种“前台后台”的齿轮速率“匹配失衡”的问题就逐步显现出来。而中台就像是在前台与后台之间添加了一组“变速齿轮”,将前台与后台的速率进行匹配,是前台与后台的桥梁,它为前台而生,易于前台使用,将后台资源顺滑流向用户,响应用户。
(二)“数据中台”的由来
“数据中台”并不是一个专业术语,简单来说,它是指通过数据技术,对海量数据进行采集、计算、存储、加工,且进行统一标准和口径,以达到对企业的数据资产进行管理及应用为目的的平台。数据中台把数据统一后,形成标准数据,再进行存储,形成大数据资产层,进而为客户提供高效服务。
“数据中台”的概念是由阿里巴巴于2015年首次提出。阿里巴巴认为,数据中台是集方法论、工具、组织于一体的“快”、“准”、“全”、“统”、“通”的智能大数据体系。阿里人通过多年不懈的努力,在业务的不断催化滋养下,将自己的技术和业务能力沉淀出一套综合能力平台,具备了对于前台业务变化及创新的快速响应能力。
阿里巴巴中间件首席架构师、《阿里巴巴中台战略思想与架构实践》作者钟华表示,在用阿里技术推动企业数字化转型、建立数字中台的过程中,第一大挑战是业务、其次才是技术。所谓业务挑战,就是从业务视角,把共性的业务模块沉淀到共享业务中台,把个性化的业务剥离出去后形成前台,形成“大中台,小前台”的新格局。
阿里巴巴发展数字中台的核心经验是将原有的共享IT部门必须要找到极强的互联网业务作为抓手,把自己变成核心业务部门,才能够真正转型成为企业的共享业务事业部,而不是某种变形的、换汤不换药的共享IT部门,这也就是阿里共享业务事业部所讲的“业务滋养”的概念。
二、企业为何要布局数据中台?
数据中台的核心价值,在于帮助企业将琐碎的业务数据进行统一的规划、管理、整合,形成符合企业特征的价值实现通道——即企业的“数字资产”。在此过程中,数据中台所瞄准的主要问题是提高企业的数据管治能力、提供数据管理工具、提升数据利用效率。
对于传统企业来说,要把能力中心构建起来,光做一个端还不够,需要把这些端打通。一个“特种兵”没有用处,它真正需要的是把自己的炮火和雷达能力都建立起来。数据中台最终的目标是让“一切业务数据化,一切数据业务化”,将所有的数据汇聚到数据中台来,打通各个业务线的数据流转、数据链路,了解企业数据现状。
在为数据应用提供数据服务的时候,减少数据平台的重复开发,减少数据重复的存储,从而减少企业成本。同时,建立统一的数据存储、数据使用模型中心、能力中心,将相关业务领域的数据做汇聚,解决了数据互联互通的诉求,实现数据价值上的一加一大于二。
以阿里巴巴为例,其数据中台系统由多元数据采集和接入、公共数据中心、统一数据服务三个核心板块构成,成功在新零售、金融、物流、营销、旅游、健康、大文娱、社交等阿里商业生态中,实现了业务数据化和数据业务化,为业务前台和云端双向赋能。
阿里巴巴对外开放的数据中台,2018年曾帮助海底捞旗下的云上捞APP的会员猛涨,更智能的是应用能够对每位用户精准画像,记得住每一位用户的口味和喜好,进而实现个性化、定制化的"千人千锅"服务。公开数据显示,截止目前云上捞注册会员已达到4500万人,较之2018年增长50%。此外,已经享受阿里数据中台服务的还有央视、华硕、大润发等。
阿里旗下的支付宝已经从金融支付工具变成了数字生活开放平台,不仅能购买金融服务、电子支付、借款、还xyk,还新增了外卖、果蔬商超等便民生活板块。支付宝想做的就一件事,那就是成为人们生活的一部分。要实现这个目标,靠的就是中小企业向数字化经营的转型。
三、企业如何布局数据中台?
从企业应用的角度而言,如何应用数据中台管理业务数据、挖掘数据价值并非易事。数据化中台对企业来说主要有四个过程:
(一)连接
对内,企业需要把前端与前端、前端和后端供应链、制造系统相互打通。对外,对全业务场景中的人与人、人与物、物与物的数据链接进行识别和规划,结合企业特征方向梳理业务数据需求场景。
(二)沉淀核心能力
对分散的业务数据进行统一规划、搜集、存储,建立数据资产目录,为业务数据化管治奠定基础。每个企业实际的竞争能力是不一样的,有些是以产品制胜,有些是以成本制胜。但这些核心能力必须要沉淀下来,才能赋能给新业务。
(三)把数据变成资产
根据阿里讲的“数字化运营”,就是业务数据化,数据资产化。以前连消费者是谁都不知道,这些数据沉淀的非常少。现在的技术已经可以让你做到业务数据化了,但很多企业的数据积累起来之后怎么用?中台解决的就是这个问题,把数据资源利用起来,变成数据资产。搭建数据中台,生产加工、物流运输、财务管控、市场营销、客户管理等各业务线形成快速稳健的数据价值加工通道。
(四)让资产发挥价值
数据变成资产之后,需要找到一个场景把它用起来。举个简单的例子,星巴克是靠什么挣钱?附餐。咖啡本身往往是不挣钱的,只是一个流量生意。但它通过场景化的东西,想办法给你推荐附餐。这就是数据资产场景化的过程。
再比如共享单车,本身也不见得会多挣钱,但收集数据以后,可以通过数据服务挣钱。对于在线下开店的企业来说,就更是如此了。在线下培养一个好的店长是非常难的,但如果你有很多数据,就可以用人工智能来替代店长的很多工作,因为店长不外乎补货和选品。
在未来,数据中台将会是数字化经营的重要依托。通过数据的沉淀和技术手段,为用户提供更优质的服务,数据中台就是基于这个理念而诞生的。通过数据中台,提升企业的效能,持续提高用户的响应力,实现数据化的运营,更好地支持业务发展和创新。
如今,数据中台对很多企业来说,是一个非常有吸引力的数字化解决方案,但企业需要以业务需求来推动数字化进程,而不能一知半解就盲目进行,当企业在明确的业务需求驱动下,搭配完善的数字化解决方案,才能降低转型失败的几率。
数据中台不是一个简单的系统应用, 数据对于一个企业来说是推动业务的核心。数据中台承载的对象是能力,包括业务能力、技术能力、计算能力、数据能力、AI能力等等,所有企业从组织层面可沉淀、可复用的各种能力。数据中台所做的不仅仅只是整合数据,找到数据,他将沉淀的各种能力共享给前台各种应用,从缩减时间、降低成本、规避风险、提高效率等各个方面全方位提升企业数字化敏捷力。
数据中台能解决哪些问题?
1、效率问题
为什么应用开发增加一个报表,就要十几天时间?为什么不能实时获得用户推荐清单?当业务人员对数据产生一点疑问的时候,需要花费很长的时间,结果发现是数据源的数据变了,最终影响上线时间。
2、协作问题
当业务应用开发的时候,虽然和别的项目需求大致差不多,但因为是别的项目组维护的,所以数据还是要自己再开发一遍。
3、能力问题
数据的处理和维护是一个相对独立的技术,需要相当专业的人来完成,但是很多时候,我们有一大把的应用开发人员,而数据开发人员很少。
这三类问题都会导致应用开发团队变慢。这就是中台的关键——让前台开发团队的开发速度不受后台数据开发的影响。
所以企业无论数据量大小,只要有业务场景需求,降低开发成本,快速灵活的开发业务应用产品,就应该把数据中台的建设提上议程,在具体技术选型上,可以根据数据量的大小和场景的复杂度来选择。
《企业IT架构转型之道:阿里巴巴中台战略思想与架构实战》(钟华)电子书网盘下载免费在线阅读
r3jc
书名:企业IT架构转型之道:阿里巴巴中台战略思想与架构实战
作者:钟华
豆瓣评分:81
出版社:机械工业出版社
出版年份:2017-4-1
页数:357
内容简介:
在当今整个中国社会都处于互联网转型的浪潮中,不管是政府职能单位、业务规模庞大的央企,还是面临最激烈竞争的零售行业都处于一个重要的转折点,这个转折对企业业务模式带来了冲击,当然也给企业的信息中心部门带来了挑战:如何构建IT系统架构更好地满足互联网时代下企业业务发展的需要。
作者简介:
钟华(花名:古谦)阿里巴巴中间件首席架构师,15年中间件领域行业经验。对传统企业IT建设和互联网架构都有较为深入的理解,有着扎实的理论基础和丰富的实战经验,多次作为总架构师协助大型传统企业打造业务中台项目,为企业实现“互联网+”转型提供了科学的发展方向和强有力的技术支持,项目涉及政府、制造业、金融、交通、媒体等多个领域。
什么是零代码应用开发平台
尽管市场上也把建站、网店开发、小程序开发等免代码服务也称为零代码开发,但因为这些平台面向的是特定的目的,服务一个专有的范式,所以一般不将他们划入零代码平台的范畴之内。真正的零代码开发平台面向的是广泛和多样的需求,在设计aPaaS产品的时候,并不确定一个特定的用户会用它来搭建什么应用。
当然,虽说面向的需求是广泛的,也不代表aPaaS是万能的。零代码开发几乎都是面向企业应用世界,而很难扩展到消费者应用领域,比如游戏、社交、工具软件等必然长期属于原生开发的世界。
所以,零代码应用开发平台需要一个比较准确的定义。它是指围绕企业数据和业务管理需求,通过可视化方式设计数据结构,用户交互形式、设置访问权限和定义工作流程的平台。你会发现,即使是原生开发企业软件,大体也是按照以上这几个步骤来进行的。
我用一个相对完整的列表,将零代码开发平台的能力元素和特性描述如下:
1)可视化构筑业务对象数据表(Entity),并支持建立关联。甚至需要支持跨应用的数据表关联。(这是aPaaS未来可能胜出其他方案的关键优势)。
2)为不同的数据场景配置不同类型的视图(View),能够定义数据行和列的过滤,能够设置列表、看板、日历等不同界面形式。
明道云构筑的销售应用数据视图
3)能够定义不同用户角色(Role),并赋予角色不同的数据访问和改写权限(PermissionSet)。权限定义越精细越好。
明道云构筑用户角色和权限组合的界面
4)能够建立针对数据的汇总表和统计图表(Report)
5)能够建立自定义的输入表单(Form),分发给不同角色使用。
6)能够建立自定义的打印报表(FormReport),用于输出各类形式表格,通过Email,短信发送或者打印。
7)能够管理企业用户、部门、组织结构,并将其用于应用逻辑关系,比如应用的分发,角色的赋予和工作流中的流向信息。
8)能够可视化配置工作流(Workflow),支持特定条件下的数据新增,改写,删除等 *** 作,并能够融入数据填写,审批等人工流程节点。工作流的运行能够监控和保存日志。
明道云构筑审批工作流的界面
9)应用能够封装后分发(Distribution)给不同的用户。
10)面向企业内部个人用户的工作台,仪表台等特性,实现个性化使用。
不同的aPaaS产品会有不同的特色和侧重点。所以以上特性并不一定存在于每一个aPaaS产品中。但是,特性越完整的,就越接近一个典型意义上的零代码企业应用开发平台。在以上实现中,有纯粹的零代码模式,也有个别需要用低代码方式来降低产品复杂度,但同时也会让非技术人员难以上手。
所以,aPaaS是SaaS应用和开发工具的混合,说它是SaaS,是因为开发者和终端用户使用的是同一个产品,只是通过权限和分发关系让界面千人千面。说它是开发工具,是因为它用模型模拟的应用搭建思路和原生数据库应用开发是类似的。
软件的应用特点和二次开发能力共存也不是一个新鲜事物。用Excel软件构筑一个个人所得税计算器,让用户可以输入自己的工资,即可得到应缴税额,对于使用者来说是应用,对编制这个Excel文件的人来说是开发工具,但他们用的都是Excel。
为什么企业软件领域可以实现零代码开发
为什么游戏和社交软件做不到零代码开发,而企业软件市场却出现了零代码工具是因为企业软件的开发比较简单吗
当然不是。能够模式化完成一个工作的原因在于这项工作具备可重复性,就像我们会用3D打印制作一两件零件,但如果要生产成千上万个同样的零件,我们宁可花费成本先去制作模具。企业软件可以模式化开发的原因就在于大多数企业管理软件都由非常类似的需求和实现方式来构成,如果不积极利用这些相似性和模型化方法就需要不断重复发明类似的轮子。
当然也并非所有的企业应用都有相似性。在特定行业和职能中总有一些需要专门化设计和开发的应用。但在企业的运营全流程中,围绕客户,供应商,销售订单,产品,供应商,采购订单,制造流程,服务流程等商业对象,企业软件要解决的问题具有很强的相似性。这些相似性,或者使用范式可以被概括为以下环节:
1)围绕上述商业对象(BusinessObjects)的数据搜集和存储,并对数据的有效性进行验证。例如:建立一个采购订单,向特定供应商采购三项商品。
2)数据的查询和呈现。例如:运营部门查询处A仓库在今天应该到货的采购订单。财务部门查询货物已经收讫,并且应该在本周付款的采购订单。
3)数据的计算。例如:当采购订单的货物到达特定仓库后,更新相关商品的库存信息。
4)流程的控制。例如:当起草采购订单并准备发出时,根据采购的类别和金额发起不同的审核流程,在审核通过或者拒绝后执行不同的流程内容。
5)信息通知。例如:在采购订单批准后,自动生成采购单并发送给供应商,并通知仓库准备收货。
6)数据的统计和分析。例如:汇总过去一年的采购订单中按照BOM清单的产品金额分布,或者按照供应商的分布。
企业软件的设计和开发人员对以上这些使用范式都非常熟悉,它们经常出现在各种企业软件的开发需求中。实际上,除了以上抽象出的范式,企业软件的其他独特功能点并不太多了,甚至很多属于所有企业级软件共有的模块,比如管理用户和用户组,权限角色等。正是因为这个原因,企业软件的开发存在高度模型化的可能,从而在大部分场景下,摆脱对原生代码开发的依赖。
在云时代之前,除了Access以外,苹果公司也有FileMaker,Intuit公司也曾经开发过Quickbase(这个名字来源于Intuit公司财务软件产品Quicken),Quickbase后来被剥离,一直到今天都在提供服务。即使在原生开发领域内,企业软件市场也出现了各种现成的开发框架,它们和今天的零代码平台一样,都是为了通过模型化来提高交付效率和质量的办法。
为每个企业的软件需求,都从第一行代码开始写起,单独依靠某种高级语言和集成开发环境建立开发项目,这种做法已经越来越没有必要。正如Gartner的预测,大部分的企业应用将来都会依赖零代码平台,以至于不远的将来,零代码平台并不会刻意保留这个前缀,因为这将成为天经地义的事情,这就像今天为了满足一个通用需求,大多数企业不会去定制开发,甚至零代码平台都不会用,而是直接使用一个标准的SaaS产品。
为什么aPaaS具有难以替代的优势
用户开始选择aPaaS产品,不仅仅是因为他们可以这样做,更重要的是因为不得不这样做。因为aPaaS与定制开发,以及标准SaaS产品相比有几个难以替代的优势。
1)满足企业的多样化需求
企业软件需求的多样化是定制开发模式的起源。虽然标准SaaS产品能够满足企业应用需求中的共性部分,但是因为行业、规模和产品内在特性的差异,每个企业的管理方式和流程都有自己的特点,而且它还会根据企业的规模阶段不断演变。这种差异在不同职能中程度不一,一般来说,围绕产品设计、制造和服务履行的核心业务流差异度更高,而人事,财务等价值创造的支持环节差异度比较小。
在这种背景下,用户始终在寻求一种既能保持足够的灵活性,又能够控制开发的成本和复杂度的方法。aPaaS基本就是直接针对这个问题而诞生的。
2)从定制开发中需求沟通的痛苦中解脱
企业软件实现过程中的第一痛点还不是贵,而是需求沟通的复杂。有业务需求的人不是开发软件的人,能够开发软件的人对业务痛点并没有切身的体会和经验。于是行业非常依赖专业的企业软件需求分析和实现方法设计能力,但这个能力是非常稀缺的资源。这也难怪企业软件开发需求的提出主体总是五花八门的,他们之间也需要进行复杂的沟通和信息汇总。
更要命的是,很多时候需求在实施之前都无法100%确定,企业自己无法提出一个完整的解决方案。这时候,要么需要求助于咨询机构这样的外脑,要么就只能走一步看一步。这两个方案听起来都不令人舒适。前者绝非普通中小企业所能够承受,后者可能会影响系统的开发和实施质量。
aPaaS的出现倒是让走一步看一步的方案变得更加现实。企业可以通过零代码平台渐进地开始实施。如果整个系统过于复杂,可以先从一个具体的环节开始,局部数字化(比如先把订单管起来)。反正用aPaaS搭建的速度足够快,用户甚至可以利用零代码工具来生成企业应用原型,在实际使用中进行验证,确认了终端用户可以掌握,原先识别的问题可以被有效解决之后,再继续推进更完整的实施。
可以这么说,零代码工具可以让开发者和使用者之间的距离充分缩短。在极端情况下,使用者甚至可以自己就是搭建开发者自己。他们可能在一两个小时的搭建后就能够确认这个方案是不是能够有效地解决问题。
3)在企业内部打通数据中台的需求
在企业IT中,还有一个致命痛点存在,那就是不同业务系统之间的数据相互隔离,不能综合使用,使得企业难以进行跨职能的数据相关性和因果分析,也难以实现跨职能的数据自动化。比如要分析一个价格调整措施对财务报表的影响,这个工作在任何一个孤立的信息系统中是无法完成的,而如果要做到,就至少需要从采购,销售,营销和财务系统中获得数据。同样的道理,企业也很难在遇到财务目标无法达成的情况下,自动做出最优的价格决策。这些都是影响企业运营水平至关重要的问题。近年来,Gartner提出的PacedLayer架构,以及阿里给电商企业提供的中台方案就是针对这种需求的反馈。
大企业当然可以投入专门的资金来打造数据中台性质的系统,但小企业支付不起,并不代表他们不想获得这样的能力。aPaaS平台提供了这个可能性。
首先,因为aPaaS平台管理数据的模型一致,所以它一般能够提供一个标准化程度非常高的编程接口,从外部系统汇合数据变得相对容易很多,这就像路由器一样,不管你有多少联网设备,它们都可以用统一的协议连接在一起。有了集中的数据,各种应用需求都变得容易兑现。哪怕个别系统依然需要通过抽取数据服务后另行原生开发,也比不断重复做数据整合工作要高效很多倍。
甚至,如果用aPaaS平台直接管理业务数据对象,这个数据整合工作都可以免除。用户可以直接在各个职能相关的数据对象中建立关联,建立汇总查询,批量抽取数据到BI平台,建立不同数据之间的自动化。
有关企业数字中台的介绍,建议可以读一下这篇采访文章。
4)突出的成本和效率优势
零代码开发平台和原生代码开发相比到底能够提高多少效率目前还没有精确的计量,但这个效率差至少是10倍以上。传统开发模式需要10天的,aPaaS一天之内就能够搞定。
更重要的效率差别不仅仅是时间,还包括零代码平台可以免除专业技术人员的参与。虽然它要求搭建者熟悉业务,完成基本的逻辑梳理,但毕竟这和动辄需要和好几位技术人员一起开会沟通需求要高效得多。即便在复杂的应用系统上,也至多只需要2-3人分工就能够完成整个项目的实现。因为简化协作的原因带来的成本节省甚至都不值十倍了。因为所有人都知道找到靠谱的定制软件开发团队几乎就是一件撞大运的事情。
同时,定制开发通常很难提供高品质的软件。软件运行的可靠性,缺陷消除的程度都很难和标准化产品相比,毕竟定制软件只有一个用户。而一个aPaaS平台不仅要同时服务很多终端用户,还要服务五花八门的应用搭建者,它能够做到一次对,次次对;一次缺陷消除,所有用户收益的效果。
5)开箱即用和自己动手的两全
和成型的SaaS应用相比,aPaaS看似有一个缺点,就是依然需要“搭建”。这有点像整体家具系统,摆在样品间很好看,但是实际买回家还需要施工人员来拼装才能达到预期的效果。
实际上,这个问题并不是无解,甚至很好解。aPaaS一开始自然不可能获得各个行业的最佳实践,让每个企业都能够看到“样板间”效果。但是,随着时间的推移,用户企业和集成商的参与,样板间会越来越多,甚至比SaaS产品提供的用例方案更加强大,因为后者提供的是一个固定家具的摆设效果,而前者能够根据不同的房型,提供不同的家具组合方案。
而且,在足够明确的细分市场下(比如金属加工制造流程管理这样的颗粒度),可以在aPaaS平台上开发出完全开箱即用的应用,直接分发给不同企业使用。有了这个能力,aPaaS不仅能够服务好终端用户,还能够催生集成商工作模式的变革,他们不仅可以通过出售IT服务挣钱,还能够在服务中加入解决方案的价值,消除定制开发成本,大幅提高项目服务毛利。
有了开箱即用的能力后,就能够大大加速企业采纳的意愿。而且,才采纳以后,“自己动手”的能力依然存在。就像先进的整体家居系统不仅可以组合,而且可以重新组合。企业软件的适用模式永远和企业阶段有关,比如小型制造业并不见得需要质量管理单元,但当年产值突破一亿元左右后,不仅面临ISO认证的刚性需求,也内在地需要引入全面质量管理。这样的企业可以在软件实施后依照实际需要继续调整、改进和增加软件模块。这个过程同样是低成本和高效率的。
6)平台特征提供的计算能力保证
对于定制实施系统来说,要分别通过分布式数据库,流式计算等先进技术来克服性能问题是一件极其昂贵的事情。aPaaS平台虽然为用户提供的是一个应用级的产品,但因为它范式统一,就有机会将这些基础计算隐藏起来,让用户不必关心这些后台事务就能够获得高性能的计算服务。通过aPaaS平台管理的数据表无论规模有多大,读写有多么频繁,实时查询的要求有多高,总有一个计算框架可以胜任。这种平台的扩展性让客户可以真正放心,aPaaS带来的不仅仅是开发效率的提升,还包括一个伸缩自如的基础设施服务。即便企业将来的业务规模成长百倍,也不会需要彻底重建IT系统。实际上,年收入数百亿美元的业务,背后驱动的IT平台极有可能就是Salesforce的p>
正是因为以上这些优势,aPaaS在没有得到行业命名之前就已经开始逐步渗透到企业IT服务领域。在最近几年正在悄悄替代大量的定制实施软件项目,也让原先依靠标准SaaS产品的企业找到了新的选择。
aPaaS目前适合什么样的企业
aPaaS虽然拥有巨大的优势,但也不代表它能够满足所有行业和企业的所有IT需求。下面列出了一些常见的排除项。aPaaS方案对这些性质的需求吸引力不强。
1)行业有明显的专有特征
有些行业本身的专有化程度很高,而且企业之间的差异性不大,这时候垂直的行业应用可能更加合理。
围绕这个特征最典型的例子就是餐饮业和酒店业。所有餐饮业的运营逻辑都是类似的,除了单店和连锁可能使用不同复杂度的方案以外,应用模块都大同小异。而且,这个行业解决问题的方法和范式是有明显的行业特征的,比如餐厅的排队等座系统,点单结账系统等。用零代码工具来构建如此专有的场景反而更加麻烦,而且无法有效提供有行业特色的视图。
2)行业有独立的代码审计要求
金融等行业的核心业务系统因为法规等要求不能使用零代码平台,因为它无法满足代码审计的要求。aPaaS平台不一定能够提供源代码给用户企业,而且即使提供,也无法佐证应用系统处理数据的准确性。这些行业因为监管要求高,本身资金也宽裕,所以不会应用aPaaS方案在核心业务环节。
3)面向顾客的前台系统
这个当然就是指的电商网店平台了。虽然电商零售的基本数据管理和aPaaS的能力并无太大的距离,但是面向消费者的前台系统一般要求更高的灵活性和营销设施的配套,用零代码平台创建不如直接使用专门的电商系统,比如有赞、微盟等开店方案。它们提供的不仅仅是店面功能,还包括围绕顾客的营销服务和支付平台,这些是aPaaS所不擅长的领域。
除此之外的大部分企业IT需求,零代码平台都有足够的优势来胜任。而且,随着软件和服务的界限越来越模糊,很难说未来的aPaaS不能扩展它的领地。企业软件的本质就是生产力工具,aPaaS的核心精神就是围绕企业的数字化运营提供高生产力选项。
读完这段,如果你对零代码平台有兴趣,明道云提供直接的使用体验,你可以自助注册试用。
以上就是关于IT组织的数字化转型全部的内容,包括:IT组织的数字化转型、企业的数据中台的价值、IT信息系统对企业核心竞争力的支撑等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)