ThreadPoolExecutor深度解析

ThreadPoolExecutor深度解析,第1张

ThreadPoolExecutor深度解析
    • 一、线程池优势
    • 二、ThreadPoolExecutor继承关系
    • 三、ThreadPoolExecutor构造器分析
    • 四、如何自定义线程池
    • 五、ThreadPoolExecutor处理流程
    • 六、核心参数说明
      • 线程池状态
      • 拒绝策略
    • 七、核心源码分析
      • 分析流程
      • execute(Runnable command)
      • addWorker(Runnable firstTask, boolean core)
      • runWorker(Worker w)
      • processWorkerExit(Worker w, boolean completedAbruptly)
      • shutdown() VS shutdownNow()

一、线程池优势

Java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序 都可以使用线程池。合理地使用线程池能够带来3个好处:

  • 降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
  • 提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
  • 提高线程的可管理性。线程是稀缺资源,如果无限制地创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。
二、ThreadPoolExecutor继承关系

三、ThreadPoolExecutor构造器分析
public ThreadPoolExecutor(int corePoolSize, //核心线程数
                              int maximumPoolSize,//最大线程数
                              long keepAliveTime,//存活时间
                              TimeUnit unit,//时间单位
                              BlockingQueue<Runnable> workQueue,//任务队列
                              ThreadFactory threadFactory,//线程工厂
                              RejectedExecutionHandler handler) { //拒绝策略
        if (corePoolSize < 0 ||  //安全检查
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            throw new IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            throw new NullPointerException();
        this.acc = System.getSecurityManager() == null ?
                null :
                AccessController.getContext();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }
四、如何自定义线程池

自定义线程工厂

class SimpleThreadFactory implements ThreadFactory {
   public Thread newThread(Runnable r) {
     return new Thread(r);
   }
 }

创建线程池

ExecutorService es = new ThreadPoolExecutor(
                2,  核心
                5,  最大
                2L, 保活时间
                TimeUnit.SECONDS, 保活时间单位
                new LinkedBlockingQueue<>(2),  必须指明,默认最大为Integer.MAX_VALUE
                new SimpleThreadFactory(), 线程池,可以自定义
                new ThreadPoolExecutor.AbortPolicy()); 线程池满之后,处理策略,默认拒绝策略
五、ThreadPoolExecutor处理流程
  • 添加任务到线程池中,核心线程执行
  • 如果核心线程不够,添加到阻塞队列中
  • 如果阻塞队列不够,开启最大线程执行
  • 如果最大线程不够,使用拒绝策略


源码认证:

    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))//核心线程
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {//队列
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))//最大线程
            reject(command);//拒绝
    }
六、核心参数说明 线程池状态
  • RUNNING: 运行状态
  • SHUTDOWN : 不接受任务,但处理已经有的任务
  • STOP: 停止所有的任务,包括正在运行的
  • TIDYING : 所有任务停止,待处理任务为0,执行TERMINATED() 方法
  • TERMINATED: TERMINATED() 方法执行完成

源码认证:

这里使用一个ctl 是一个32位的int数据,使用高三位标识线程池状态,剩下的标识线程池线程数量。

	private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));
	private static final int COUNT_BITS = Integer.SIZE - 3;
	private static final int CAPACITY   = (1 << COUNT_BITS) - 1; 线程池最大数量

    // runState is stored in the high-order bits 
    //2^3=8 这里可以表示8种状态
    private static final int RUNNING    = -1 << COUNT_BITS;
    private static final int SHUTDOWN   =  0 << COUNT_BITS;
    private static final int STOP       =  1 << COUNT_BITS;
    private static final int TIDYING    =  2 << COUNT_BITS;
    private static final int TERMINATED =  3 << COUNT_BITS;

    // Packing and unpacking ctl
    private static int runStateOf(int c)     { return c & ~CAPACITY; } 计算状态
    private static int workerCountOf(int c)  { return c & CAPACITY; } 计算线程数量
    private static int ctlOf(int rs, int wc) { return rs | wc; }
拒绝策略
  • RejectedExecutionHandler :拒绝抛出异常
  • CallerRunsPolicy :本身的调用者调用任务
  • DiscardPolicy :丢弃任务
  • DiscardOldestPolicy :丢弃阻塞队列中第一个任务

源码认证:

public static class CallerRunsPolicy implements RejectedExecutionHandler {
       
        public CallerRunsPolicy() { }
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                r.run();
            }
        }
}
public static class AbortPolicy implements RejectedExecutionHandler {
        public AbortPolicy() { }

               public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            throw new RejectedExecutionException("Task " + r.toString() +
                                                 " rejected from " +
                                                 e.toString());
        }
}
 public static class DiscardPolicy implements RejectedExecutionHandler {
        public DiscardPolicy() { }

     
        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
        }
}
public static class DiscardOldestPolicy implements RejectedExecutionHandler {
        public DiscardOldestPolicy() { }

        public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
            if (!e.isShutdown()) {
                e.getQueue().poll();
                e.execute(r);
            }
        }
 }
七、核心源码分析 分析流程
  • execute执行添加任务,有可能核心,阻塞,最大,拒绝。
  • addWorker封装任务执行体,启动工作线程Worker.start()
  • Worker.runWorker工作线程启动后,有任务执行,无任务队列中获取任务
  • processWorkerExit工作线程退出工作

execute(Runnable command)

证明线程的处理流程

  1. 计算当前线程池数量是否小于核心线程池数量 -> addWorker(command, true)
  2. 判断线程池状态和添加阻塞队列 ->workQueue.offer(command)
  3. 判断是否可以添加到最大线程池 ->addWorker(command, false)
  4. 拒绝策略
    public void execute(Runnable command) {
        if (command == null)
            throw new NullPointerException();
        
        int c = ctl.get();
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))//核心线程
                return;
            c = ctl.get();
        }
        if (isRunning(c) && workQueue.offer(command)) {//队列
            int recheck = ctl.get();
            if (! isRunning(recheck) && remove(command))
                reject(command);
            else if (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        else if (!addWorker(command, false))//最大线程
            reject(command);//拒绝
    }
addWorker(Runnable firstTask, boolean core)
  • 判断线程状态 和 增加线程数量
  • 新建Worker,添加线程到workers(HashSet)集合中,开启线程执行
  • 启动失败 1.移除workers集合中当前线程 2.线程计算减一 3.执行钩子函数
private boolean addWorker(Runnable firstTask, boolean core) {
        retry:
        //判断线程状态 增加线程数量
        for (;;) {
            int c = ctl.get();
            int rs = runStateOf(c);//线程池状态

            // Check if queue empty only if necessary.
            if (rs >= SHUTDOWN &&  //判断线程池状态是否为SHUTDOWN 以上状态(STOP TIDYING等)
                ! (rs == SHUTDOWN &&  //线程池已经关闭,还有没处理的任务
                   firstTask == null && //此时任务为补充任务,非核心和最大
                   ! workQueue.isEmpty())) //队列是否为空
                return false;

            for (;;) {
                int wc = workerCountOf(c);//目前线程数量
                if (wc >= CAPACITY ||
                    wc >= (core ? corePoolSize : maximumPoolSize))//判断是否大于核心或最大
                    return false;
                if (compareAndIncrementWorkerCount(c))//自增1 线程数
                    break retry;  //退出
                c = ctl.get();  // Re-read ctl
                if (runStateOf(c) != rs)//cas判断runState
                    continue retry;
                // else CAS failed due to workerCount change; retry inner loop
            }
        }

        boolean workerStarted = false;
        boolean workerAdded = false;
        Worker w = null;
        try {
            w = new Worker(firstTask);//工作者
            final Thread t = w.thread;//获取线程
            if (t != null) {
                final ReentrantLock mainLock = this.mainLock;//防止多线程修改workers
                mainLock.lock();
                try {
                    // Recheck while holding lock.
                    // Back out on ThreadFactory failure or if
                    // shut down before lock acquired.
                    int rs = runStateOf(ctl.get());
                    //线程池状态判断
                    if (rs < SHUTDOWN ||
                        (rs == SHUTDOWN && firstTask == null)) {
                        if (t.isAlive()) // precheck that t is startable
                            throw new IllegalThreadStateException();
                        workers.add(w);//添加线程
                        int s = workers.size();
                        if (s > largestPoolSize)
                            largestPoolSize = s;
                        workerAdded = true;
                    }
                } finally {
                    mainLock.unlock();
                }
                if (workerAdded) {
                    t.start();//启动线程
                    workerStarted = true;
                }
            }
        } finally {
            if (! workerStarted)
                addWorkerFailed(w);//启动失败 workers.remove(w)  移除线程
        }
        return workerStarted;
    }
runWorker(Worker w)
final void runWorker(Worker w) {
        Thread wt = Thread.currentThread();
        Runnable task = w.firstTask;
        w.firstTask = null;
        w.unlock(); // allow interrupts 刚开始抑制中断为-1  现在-1 变 0 允许中断
        boolean completedAbruptly = true;
        try {
             //获取当前任务 或则  阻塞队列任务
            while (task != null || (task = getTask()) != null) {
                w.lock();
                if ((runStateAtLeast(ctl.get(), STOP) ||
                     (Thread.interrupted() &&
                      runStateAtLeast(ctl.get(), STOP))) &&
                    !wt.isInterrupted())
                    wt.interrupt();//线程池状态关闭  中断停止
                try {
                    beforeExecute(wt, task);//钩子函数
                    Throwable thrown = null;
                    try {
                        task.run();//执行任务
                    } catch (RuntimeException x) {
                        thrown = x; throw x;
                    } catch (Error x) {
                        thrown = x; throw x;
                    } catch (Throwable x) {
                        thrown = x; throw new Error(x);
                    } finally {
                      afterExecute(task, thrown);//可以处理线程池异常,但是这里抛出异常,不会执行后面代码
                    }
                } finally {
                    task = null;
                    w.completedTasks++;//当前工作线程完成任务+1
                    w.unlock();
                }
            }
            //the worker died due to user exception == completedAbruptly = true
            completedAbruptly = false;//只钩子函数报出异常才为ture
        } finally {
            processWorkerExit(w, completedAbruptly);
        }
    }
processWorkerExit(Worker w, boolean completedAbruptly)
private void processWorkerExit(Worker w, boolean completedAbruptly) {
        //the worker died due to user exception == completedAbruptly = true
        //由于用户自定义钩子函数抛出的异常=true
        if (completedAbruptly) // If abrupt, then workerCount wasn't adjusted
            decrementWorkerCount();  //调整工作线程数量

        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            completedTaskCount += w.completedTasks;//work使用数量加1
            workers.remove(w);//线程集合移除
        } finally {
            mainLock.unlock();
        }

        tryTerminate();//执行钩子

        int c = ctl.get();
        if (runStateLessThan(c, STOP)) {//状态线程池判断
            //检查是否用户异常中断,是的话添加对应的工作addWorker
            if (!completedAbruptly) {
                int min = allowCoreThreadTimeOut ? 0 : corePoolSize;//超时判断
                if (min == 0 && ! workQueue.isEmpty())//至少保证工作线程有一个
                    min = 1;
                if (workerCountOf(c) >= min)
                    return; // replacement not needed
            }
            addWorker(null, false);
        }
    }
shutdown() VS shutdownNow()
    public void shutdown() {
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            advanceRunState(SHUTDOWN);//Cas设置线程池不接受新任务,继续处理队列中的任务  
            interruptIdleWorkers();//打断空闲的线程
            onShutdown(); // hook for ScheduledThreadPoolExecutor 扩展点
        } finally {
            mainLock.unlock();
        }
        tryTerminate();//
    }
    public List<Runnable> shutdownNow() {
        List<Runnable> tasks;
        final ReentrantLock mainLock = this.mainLock;
        mainLock.lock();
        try {
            checkShutdownAccess();
            advanceRunState(STOP);//设置线程池不接受新任务,也停止处理队列中的任务
            interruptWorkers();//打断所有的线程
            tasks = drainQueue();//去拿队列中的剩余返回
        } finally {
            mainLock.unlock();
        }
        tryTerminate();
        return tasks;
    

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/922265.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-16
下一篇 2022-05-16

发表评论

登录后才能评论

评论列表(0条)

保存