去年写了一篇博客:【SlowFast复现】SlowFast Networks for Video Recognition复现代码 使用自己的视频进行demo检测
facebookresearch SlowFast :https://github.com/facebookresearch/SlowFast
但是没有整理出快速安装的流程,这次就是把所有的安装指令整理处理,实现快速安装 facebookresearch SlowFast,如果不受国内网速限制,1分钟左右就可以安装好。
1 准备我采用的AI平台:https://cloud.videojj.com/auth/register?inviter=18452&activityChannel=student_invite
AI平台镜像选择:pytorch 1.8.0,python 3.8,CUDA:11.1.1
为了能够每次都能快速安装 facebookresearch SlowFast,需要提前下好两个权重,一个是slowfast的权重,一个是faster rcnn的权重。
需要先将这两个权重下载到AI平台的:/user-data/slowfastFile
model_final_280758.pkl:https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl
SLOWFAST_32x2_R101_50_50.pkl:https://dl.fbaipublicfiles.com/pyslowfast/model_zoo/ava/SLOWFAST_32x2_R101_50_50.pkl
mkdir -p /user-data/slowfastFile
cd /user-data/slowfastFile
wget https://dl.fbaipublicfiles.com/pyslowfast/model_zoo/ava/SLOWFAST_32x2_R101_50_50.pkl
wget https://dl.fbaipublicfiles.com/detectron2/COCO-Detection/faster_rcnn_R_50_FPN_3x/137849458/model_final_280758.pkl
2 开始安装
pip install 'git+https://gitee.com/YFwinston/fvcore'
pip install simplejson
conda install av -c conda-forge -y
conda install x264 ffmpeg -c conda-forge -y
pip install -U iopath or conda install -c iopath iopath
pip install psutil
pip install tensorboard
pip install moviepy
pip install pytorchvideo
pip install 'git+https://gitee.com/YFwinston/fairscale'
cd /home
pip install cython; pip install git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI
git clone https://gitee.com/YFwinston/detectron2 detectron2_repo
cd detectron2_repo
python setup.py build develop
cd ..
pip install -e detectron2_repo
apt update
apt install libgl1-mesa-glx
cd /home
git clone https://gitee.com/YFwinston/slowfast.git
export PYTHONPATH=/home/slowfast:$PYTHONPATH
cd slowfast
python setup.py build develop
cd /home/slowfast/demo/AVA
touch ava.json
touch SLOWFAST_32x2_R101_50_50s.yaml
cp /user-data/slowfastFile/SLOWFAST_32x2_R101_50_50.pkl /home/slowfast/configs/AVA/c2/
cp /user-data/slowfastFile/model_final_280758.pkl /home/slowfast/configs/AVA/c2/
然后在/home/slowfast/demo/AVA下面的ava.json写入:
{"bend/bow (at the waist)": 0, "crawl": 1, "crouch/kneel": 2, "dance": 3, "fall down": 4, "get up": 5, "jump/leap": 6, "lie/sleep": 7, "martial art": 8, "run/jog": 9, "sit": 10, "stand": 11, "swim": 12, "walk": 13, "answer phone": 14, "brush teeth": 15, "carry/hold (an object)": 16, "catch (an object)": 17, "chop": 18, "climb (e.g., a mountain)": 19, "clink glass": 20, "close (e.g., a door, a box)": 21, "cook": 22, "cut": 23, "dig": 24, "dress/put on clothing": 25, "drink": 26, "drive (e.g., a car, a truck)": 27, "eat": 28, "enter": 29, "exit": 30, "extract": 31, "fishing": 32, "hit (an object)": 33, "kick (an object)": 34, "lift/pick up": 35, "listen (e.g., to music)": 36, "open (e.g., a window, a car door)": 37, "paint": 38, "play board game": 39, "play musical instrument": 40, "play with pets": 41, "point to (an object)": 42, "press": 43, "pull (an object)": 44, "push (an object)": 45, "put down": 46, "read": 47, "ride (e.g., a bike, a car, a horse)": 48, "row boat": 49, "sail boat": 50, "shoot": 51, "shovel": 52, "smoke": 53, "stir": 54, "take a photo": 55, "text on/look at a cellphone": 56, "throw": 57, "touch (an object)": 58, "turn (e.g., a screwdriver)": 59, "watch (e.g., TV)": 60, "work on a computer": 61, "write": 62, "fight/hit (a person)": 63, "give/serve (an object) to (a person)": 64, "grab (a person)": 65, "hand clap": 66, "hand shake": 67, "hand wave": 68, "hug (a person)": 69, "kick (a person)": 70, "kiss (a person)": 71, "lift (a person)": 72, "listen to (a person)": 73, "play with kids": 74, "push (another person)": 75, "sing to (e.g., self, a person, a group)": 76, "take (an object) from (a person)": 77, "talk to (e.g., self, a person, a group)": 78, "watch (a person)": 79}
然后在/home/slowfast/demo/AVA下面的SLOWFAST_32x2_R101_50_50s.yaml 写入:
TRAIN:
ENABLE: False
DATASET: ava
BATCH_SIZE: 16
EVAL_PERIOD: 1
CHECKPOINT_PERIOD: 1
AUTO_RESUME: True
CHECKPOINT_FILE_PATH: '/home/slowfast/configs/AVA/c2/SLOWFAST_32x2_R101_50_50.pkl' #path to pretrain model
CHECKPOINT_TYPE: pytorch
DATA:
NUM_FRAMES: 32
SAMPLING_RATE: 2
TRAIN_JITTER_SCALES: [256, 320]
TRAIN_CROP_SIZE: 224
TEST_CROP_SIZE: 256
INPUT_CHANNEL_NUM: [3, 3]
DETECTION:
ENABLE: True
ALIGNED: False
AVA:
BGR: False
DETECTION_SCORE_THRESH: 0.8
TEST_PREDICT_BOX_LISTS: ["person_box_67091280_iou90/ava_detection_val_boxes_and_labels.csv"]
SLOWFAST:
ALPHA: 4
BETA_INV: 8
FUSION_CONV_CHANNEL_RATIO: 2
FUSION_KERNEL_SZ: 5
RESNET:
ZERO_INIT_FINAL_BN: True
WIDTH_PER_GROUP: 64
NUM_GROUPS: 1
DEPTH: 101
TRANS_FUNC: bottleneck_transform
STRIDE_1X1: False
NUM_BLOCK_TEMP_KERNEL: [[3, 3], [4, 4], [6, 6], [3, 3]]
SPATIAL_DILATIONS: [[1, 1], [1, 1], [1, 1], [2, 2]]
SPATIAL_STRIDES: [[1, 1], [2, 2], [2, 2], [1, 1]]
NONLOCAL:
LOCATION: [[[], []], [[], []], [[6, 13, 20], []], [[], []]]
GROUP: [[1, 1], [1, 1], [1, 1], [1, 1]]
INSTANTIATION: dot_product
POOL: [[[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]], [[2, 2, 2], [2, 2, 2]]]
BN:
USE_PRECISE_STATS: False
NUM_BATCHES_PRECISE: 200
SOLVER:
MOMENTUM: 0.9
WEIGHT_DECAY: 1e-7
OPTIMIZING_METHOD: sgd
MODEL:
NUM_CLASSES: 80
ARCH: slowfast
MODEL_NAME: SlowFast
LOSS_FUNC: bce
DROPOUT_RATE: 0.5
HEAD_ACT: sigmoid
TEST:
ENABLE: False
DATASET: ava
BATCH_SIZE: 8
DATA_LOADER:
NUM_WORKERS: 2
PIN_MEMORY: True
NUM_GPUS: 1
NUM_SHARDS: 1
RNG_SEED: 0
OUTPUT_DIR: .
#TENSORBOARD:
# MODEL_VIS:
# TOPK: 2
DEMO:
ENABLE: True
LABEL_FILE_PATH: "/home/slowfast/demo/AVA/ava.json"
INPUT_VIDEO: "/home/slowfast/demo/1.mp4"
OUTPUT_FILE: "/home/slowfast/demo/out.mp4"
DETECTRON2_CFG: "COCO-Detection/faster_rcnn_R_50_FPN_3x.yaml"
DETECTRON2_WEIGHTS: "/home/slowfast/configs/AVA/c2/model_final_280758.pkl"
3 测试
在/home/slowfast/demo/中传入一个视频:1.mp4
执行:
cd /home/slowfast/
python tools/run_net.py --cfg demo/AVA/SLOWFAST_32x2_R101_50_50s.yaml
最后结果:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)