安装相应依赖
apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
apt-get install --no-install-recommends libboost-all-dev
apt-get install python-dev
apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
apt-get install libatlas-base-dev
apt-get install the python-matplotlib python-scipy python-numpy
pip3 install pytest numpy boost
安装CMAKE
注意:使用apt-get安装的cmake版本太低,在使用CUDA10.2的环境下进行caffe编译时会出现CUDA_cublas_device_LIBRARY/CUDA_cublas_LIBRA报错。这是由于低版本cmake找不到cuda的库所导致。为解决这个问题,我们需要手动安装cmake,版本要求至少为3.12.0。我们选择3.14.3。
如果已经存在cmake请确认版本 cmake --version
- 从cmake官网下载cmake-3.14.3-Linux-x86_64.tar.gz
- 解压 tar -zxvf cmake-3.14.3-Linux-x86_64.tar.gz
- 在~/.bashrc文件中添加环境变量,在文件末尾添加:
export CMAKE_ROOT=/home/shiyh/download/cmake-3.14.3-Linux-x86_64
export PATH=$PATH:$CMAKE_ROOT/bin:
注意/home/shiyh/download/请替换为具体路径 - 保存,并执行source ~/.bashrc
cmake编译
- 修改Makefile.config
源码文件夹中已提供Makefile.config.example
执行cp Makefile.config.example Makefile.config - 修改CMakeList.txt中第35行
第35行的set(python_version “2” CACHE STRING “Specify which Python version to use”)中的2改为3.6(根据自己的python版本确定),保存退出 - vim Makefile.config 对配置文件中相关参数修改
## Refer to http://caffe.berkeleyvision.org/installation.html # Contributions simplifying and improving our build system are welcome! # cuDNN acceleration switch (uncomment to build with cuDNN). # USE_CUDNN := 1 #如果使用cudnn就取消注释 # CPU-only switch (uncomment to build without GPU support). # CPU_ONLY := 1 # uncomment to disable IO dependencies and corresponding data layers USE_OPENCV := 0 # USE_LEVELDB := 0 # USE_LMDB := 0 # This code is taken from https://github.com/sh1r0/caffe-android-lib # USE_HDF5 := 0 # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary) # You should not set this flag if you will be reading LMDBs with any # possibility of simultaneous read and write # ALLOW_LMDB_NOLOCK := 1 # Uncomment if you're using OpenCV 3 OPENCV_VERSION := 3 # To customize your choice of compiler, uncomment and set the following. # N.B. the default for Linux is g++ and the default for OSX is clang++ # CUSTOM_CXX := g++ # CUDA directory contains bin/ and lib/ directories that we need. CUDA_DIR := /usr/local/cuda # On Ubuntu 14.04, if cuda tools are installed via # "sudo apt-get install nvidia-cuda-toolkit" then use this instead: # CUDA_DIR := /usr # CUDA architecture setting: going with all of them. # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility. # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility. # For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility. CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \ -gencode arch=compute_35,code=sm_35 \ -gencode arch=compute_50,code=sm_50 \ -gencode arch=compute_52,code=sm_52 \ -gencode arch=compute_60,code=sm_60 \ -gencode arch=compute_61,code=sm_61 \ -gencode arch=compute_61,code=compute_61 \ -gencode arch=compute_70,code=[sm_70,compute_70] # BLAS choice: # atlas for ATLAS (default) # mkl for MKL # open for OpenBlas BLAS := atlas # Custom (MKL/ATLAS/OpenBLAS) include and lib directories. # Leave commented to accept the defaults for your choice of BLAS # (which should work)! # BLAS_INCLUDE := /path/to/your/blas # BLAS_LIB := /path/to/your/blas # Homebrew puts openblas in a directory that is not on the standard search path # BLAS_INCLUDE := $(shell brew --prefix openblas)/include # BLAS_LIB := $(shell brew --prefix openblas)/lib # This is required only if you will compile the matlab interface. # MATLAB directory should contain the mex binary in /bin. # MATLAB_DIR := /usr/local # MATLAB_DIR := /Applications/MATLAB_R2012b.app # NOTE: this is required only if you will compile the python interface. # We need to be able to find Python.h and numpy/arrayobject.h. #PYTHON_INCLUDE := /usr/include/python2.7 \ /usr/lib/python2.7/dist-packages/numpy/core/include # Anaconda Python distribution is quite popular. Include path: # Verify anaconda location, sometimes it's in root. # ANACONDA_HOME := $(HOME)/anaconda # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ # $(ANACONDA_HOME)/include/python2.7 \ # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include # Uncomment to use Python 3 (default is Python 2) PYTHON_LIBRARIES := boost_python3 python3.6m PYTHON_INCLUDE := /usr/include/python3.6m \ /usr/lib/python3.6/dist-packages/numpy/core/include # We need to be able to find libpythonX.X.so or .dylib. PYTHON_LIB := /usr/lib # PYTHON_LIB := $(ANACONDA_HOME)/lib # Homebrew installs numpy in a non standard path (keg only) # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include # PYTHON_LIB += $(shell brew --prefix numpy)/lib # Uncomment to support layers written in Python (will link against Python libs) WITH_PYTHON_LAYER := 1 # Whatever else you find you need goes here. INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies # INCLUDE_DIRS += $(shell brew --prefix)/include # LIBRARY_DIRS += $(shell brew --prefix)/lib # NCCL acceleration switch (uncomment to build with NCCL) # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0) # USE_NCCL := 1 # Uncomment to use `pkg-config` to specify OpenCV library paths. # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.) # USE_PKG_CONFIG := 1 # N.B. both build and distribute dirs are cleared on `make clean` BUILD_DIR := build DISTRIBUTE_DIR := distribute # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171 # DEBUG := 1 # The ID of the GPU that 'make runtest' will use to run unit tests. TEST_GPUID := 0 # enable pretty build (comment to see full commands) Q ?= @
需要注意的是在CUDA_ARCH 的配置中,如果使用cuda版本>=9.0需要注释或删除如下两行
-gencode arch=compute_20,code=sm_20 \
-gencode arch=compute_20,code=sm_21 \
此外,请根据所使用的GPU型号酌情添加。(大部分显卡的参数配置文件中已包含,如使用V100,请加入 ARCH= -gencode arch=compute_70,code=[sm_70,compute_70]
否则在使用时会出现
Check failed: error == cudaSuccess (48 vs. 0) no kernel image is available for execution on the device
Tesla V100 # ARCH= -gencode arch=compute_70,code=[sm_70,compute_70] GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4 # ARCH= -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61 GP100/Tesla P100 DGX-1 # ARCH= -gencode arch=compute_60,code=sm_60 For Jetson Tx1 uncomment: # ARCH= -gencode arch=compute_51,code=[sm_51,compute_51] For Jetson Tx2 or Drive-PX2 uncomment: # ARCH= -gencode arch=compute_62,code=[sm_62,compute_62]
-
回到caffe源码根目录
-
mkdir build
-
cd build/
-
cmake .. (注意:如果出现少包,缺哪个包装哪个包。然后回到源码根目录,执行make clean以后从第4步重新开始)
-
make all
-
make pycaffe
-
make install
-
make runtest
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)