caffe+ubuntu18.04+cuda10.2编译配置

caffe+ubuntu18.04+cuda10.2编译配置,第1张

安装相应依赖

apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler
apt-get install --no-install-recommends libboost-all-dev
apt-get install python-dev
apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev
apt-get install libatlas-base-dev
apt-get install the python-matplotlib python-scipy python-numpy
pip3 install pytest numpy boost

安装CMAKE

注意:使用apt-get安装的cmake版本太低,在使用CUDA10.2的环境下进行caffe编译时会出现CUDA_cublas_device_LIBRARY/CUDA_cublas_LIBRA报错。这是由于低版本cmake找不到cuda的库所导致。为解决这个问题,我们需要手动安装cmake,版本要求至少为3.12.0。我们选择3.14.3。

如果已经存在cmake请确认版本 cmake --version

  1. 从cmake官网下载cmake-3.14.3-Linux-x86_64.tar.gz
  2. 解压 tar -zxvf cmake-3.14.3-Linux-x86_64.tar.gz
  3. 在~/.bashrc文件中添加环境变量,在文件末尾添加:
    export CMAKE_ROOT=/home/shiyh/download/cmake-3.14.3-Linux-x86_64
    export PATH=$PATH:$CMAKE_ROOT/bin:
    注意/home/shiyh/download/请替换为具体路径
  4. 保存,并执行source ~/.bashrc

cmake编译

  1. 修改Makefile.config
    源码文件夹中已提供Makefile.config.example
    执行cp Makefile.config.example Makefile.config
  2. 修改CMakeList.txt中第35行
    第35行的set(python_version “2” CACHE STRING “Specify which Python version to use”)中的2改为3.6(根据自己的python版本确定),保存退出
  3. vim Makefile.config  对配置文件中相关参数修改
    ## Refer to http://caffe.berkeleyvision.org/installation.html
    # Contributions simplifying and improving our build system are welcome!
    
    # cuDNN acceleration switch (uncomment to build with cuDNN).
    # USE_CUDNN := 1  #如果使用cudnn就取消注释
    
    # CPU-only switch (uncomment to build without GPU support).
    # CPU_ONLY := 1
    
    # uncomment to disable IO dependencies and corresponding data layers
    USE_OPENCV := 0
    # USE_LEVELDB := 0
    # USE_LMDB := 0
    # This code is taken from https://github.com/sh1r0/caffe-android-lib
    # USE_HDF5 := 0
    
    # uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
    #       You should not set this flag if you will be reading LMDBs with any
    #       possibility of simultaneous read and write
    # ALLOW_LMDB_NOLOCK := 1
    
    # Uncomment if you're using OpenCV 3
    OPENCV_VERSION := 3
    
    # To customize your choice of compiler, uncomment and set the following.
    # N.B. the default for Linux is g++ and the default for OSX is clang++
    # CUSTOM_CXX := g++
    
    # CUDA directory contains bin/ and lib/ directories that we need.
    CUDA_DIR := /usr/local/cuda
    # On Ubuntu 14.04, if cuda tools are installed via
    # "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
    # CUDA_DIR := /usr
    
    # CUDA architecture setting: going with all of them.
    # For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
    # For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
    # For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
    CUDA_ARCH := -gencode arch=compute_30,code=sm_30 \
                    -gencode arch=compute_35,code=sm_35 \
                    -gencode arch=compute_50,code=sm_50 \
                    -gencode arch=compute_52,code=sm_52 \
                    -gencode arch=compute_60,code=sm_60 \
                    -gencode arch=compute_61,code=sm_61 \
                    -gencode arch=compute_61,code=compute_61 \
                    -gencode arch=compute_70,code=[sm_70,compute_70]
    
    # BLAS choice:
    # atlas for ATLAS (default)
    # mkl for MKL
    # open for OpenBlas
    BLAS := atlas
    # Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
    # Leave commented to accept the defaults for your choice of BLAS
    # (which should work)!
    # BLAS_INCLUDE := /path/to/your/blas
    # BLAS_LIB := /path/to/your/blas
    
    # Homebrew puts openblas in a directory that is not on the standard search path
    # BLAS_INCLUDE := $(shell brew --prefix openblas)/include
    # BLAS_LIB := $(shell brew --prefix openblas)/lib
    
    # This is required only if you will compile the matlab interface.
    # MATLAB directory should contain the mex binary in /bin.
    # MATLAB_DIR := /usr/local
    # MATLAB_DIR := /Applications/MATLAB_R2012b.app
    
    # NOTE: this is required only if you will compile the python interface.
    # We need to be able to find Python.h and numpy/arrayobject.h.
    #PYTHON_INCLUDE := /usr/include/python2.7 \
                    /usr/lib/python2.7/dist-packages/numpy/core/include
    # Anaconda Python distribution is quite popular. Include path:
    # Verify anaconda location, sometimes it's in root.
    # ANACONDA_HOME := $(HOME)/anaconda
    # PYTHON_INCLUDE := $(ANACONDA_HOME)/include \
                    # $(ANACONDA_HOME)/include/python2.7 \
                    # $(ANACONDA_HOME)/lib/python2.7/site-packages/numpy/core/include
    
    # Uncomment to use Python 3 (default is Python 2)
    PYTHON_LIBRARIES := boost_python3 python3.6m
    PYTHON_INCLUDE := /usr/include/python3.6m \
                     /usr/lib/python3.6/dist-packages/numpy/core/include
    
    # We need to be able to find libpythonX.X.so or .dylib.
    PYTHON_LIB := /usr/lib
    # PYTHON_LIB := $(ANACONDA_HOME)/lib
    
    # Homebrew installs numpy in a non standard path (keg only)
    # PYTHON_INCLUDE += $(dir $(shell python -c 'import numpy.core; print(numpy.core.__file__)'))/include
    # PYTHON_LIB += $(shell brew --prefix numpy)/lib
    
    # Uncomment to support layers written in Python (will link against Python libs)
    WITH_PYTHON_LAYER := 1
    
    # Whatever else you find you need goes here.
    INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
    LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib
    
    # If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
    # INCLUDE_DIRS += $(shell brew --prefix)/include
    # LIBRARY_DIRS += $(shell brew --prefix)/lib
    
    # NCCL acceleration switch (uncomment to build with NCCL)
    # https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
    # USE_NCCL := 1
    
    # Uncomment to use `pkg-config` to specify OpenCV library paths.
    # (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
    # USE_PKG_CONFIG := 1
    
    # N.B. both build and distribute dirs are cleared on `make clean`
    BUILD_DIR := build
    DISTRIBUTE_DIR := distribute
    
    # Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
    # DEBUG := 1
    
    # The ID of the GPU that 'make runtest' will use to run unit tests.
    TEST_GPUID := 0
    
    # enable pretty build (comment to see full commands)
    Q ?= @
    

    需要注意的是在CUDA_ARCH 的配置中,如果使用cuda版本>=9.0需要注释或删除如下两行
    -gencode arch=compute_20,code=sm_20 \
    -gencode arch=compute_20,code=sm_21 \
    此外,请根据所使用的GPU型号酌情添加。(大部分显卡的参数配置文件中已包含,如使用V100,请加入 ARCH= -gencode arch=compute_70,code=[sm_70,compute_70]   
    否则在使用时会出现
    Check failed: error == cudaSuccess (48 vs. 0) no kernel image is available for execution on the device
     

    Tesla V100
    # ARCH= -gencode arch=compute_70,code=[sm_70,compute_70]
    
    GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4
    # ARCH= -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61
    
    GP100/Tesla P100  DGX-1
    # ARCH= -gencode arch=compute_60,code=sm_60
    
    For Jetson Tx1 uncomment:
    # ARCH= -gencode arch=compute_51,code=[sm_51,compute_51]
    
    For Jetson Tx2 or Drive-PX2 uncomment:
    # ARCH= -gencode arch=compute_62,code=[sm_62,compute_62]

  4. 回到caffe源码根目录

  5. mkdir build

  6. cd build/

  7. cmake ..        (注意:如果出现少包,缺哪个包装哪个包。然后回到源码根目录,执行make clean以后从第4步重新开始)

  8. make all

  9. make pycaffe

  10. make install

  11. make runtest

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/langs/923020.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-05-16
下一篇 2022-05-16

发表评论

登录后才能评论

评论列表(0条)

保存