import geopandas as gp
import pandas as pd
数据读取
polygonShp=gp.read_file("./shp/globeland30-10.shp")
polygonShp
OBJECTID | Id | gridcode | Shape_Leng | Shape_Area | geometry | |
---|---|---|---|---|---|---|
0 | 1 | 1 | 10 | 1740.0 | 59400.000000 | POLYGON ((321652.212 3472141.992, 321562.212 3... |
1 | 2 | 2 | 10 | 1020.0 | 27900.000001 | POLYGON ((320602.212 3472111.992, 320572.212 3... |
2 | 3 | 3 | 10 | 1080.0 | 20700.000000 | POLYGON ((320842.212 3472111.992, 320812.212 3... |
3 | 4 | 4 | 10 | 120.0 | 900.000000 | POLYGON ((318442.212 3472021.992, 318412.212 3... |
4 | 5 | 5 | 10 | 120.0 | 900.000000 | POLYGON ((318502.212 3471991.992, 318472.212 3... |
... | ... | ... | ... | ... | ... | ... |
2998 | 2999 | 2999 | 10 | 2040.0 | 107100.000000 | POLYGON ((341932.212 3376801.992, 341752.212 3... |
2999 | 3000 | 3000 | 10 | 5100.0 | 202500.000000 | POLYGON ((342412.212 3376171.992, 342382.212 3... |
3000 | 3001 | 3001 | 10 | 5280.0 | 337500.000001 | POLYGON ((342052.212 3375511.992, 341932.212 3... |
3001 | 3002 | 3002 | 10 | 1380.0 | 60300.000001 | POLYGON ((340822.212 3375061.992, 340552.212 3... |
3002 | 3003 | 3003 | 10 | 1620.0 | 74700.000000 | POLYGON ((341812.212 3374521.992, 341692.212 3... |
3003 rows × 6 columns
基于带有坐标的Pandas DataFrame创建GeoDataFramepointcsv=pd.read_csv("./datadata-Test.csv")
pointcsv
OBJECTID | Field1 | Field2 | Field3 | |
---|---|---|---|---|
0 | 1 | 109.353080 | 30.492034 | -9.465 |
1 | 2 | 109.346870 | 30.491565 | 3.000 |
2 | 3 | 109.346467 | 30.492398 | 8.000 |
3 | 4 | 109.346567 | 30.492413 | 4.000 |
4 | 5 | 109.351589 | 30.494359 | 39.000 |
... | ... | ... | ... | ... |
8429627 | 8429628 | 109.047030 | 31.368869 | 0.000 |
8429628 | 8429629 | 109.047196 | 31.368895 | 0.000 |
8429629 | 8429630 | 109.046931 | 31.368981 | 0.000 |
8429630 | 8429631 | 109.047052 | 31.369000 | 0.000 |
8429631 | 8429632 | 109.046820 | 31.369092 | 0.000 |
8429632 rows × 4 columns
pointShp = gp.GeoDataFrame(pointcsv, geometry=gp.points_from_xy(pointcsv.Field1,pointcsv.Field2))
pointShp
OBJECTID | Field1 | Field2 | Field3 | geometry | |
---|---|---|---|---|---|
0 | 1 | 109.353080 | 30.492034 | -9.465 | POINT (109.35308 30.49203) |
1 | 2 | 109.346870 | 30.491565 | 3.000 | POINT (109.34687 30.49157) |
2 | 3 | 109.346467 | 30.492398 | 8.000 | POINT (109.34647 30.49240) |
3 | 4 | 109.346567 | 30.492413 | 4.000 | POINT (109.34657 30.49241) |
4 | 5 | 109.351589 | 30.494359 | 39.000 | POINT (109.35159 30.49436) |
... | ... | ... | ... | ... | ... |
8429627 | 8429628 | 109.047030 | 31.368869 | 0.000 | POINT (109.04703 31.36887) |
8429628 | 8429629 | 109.047196 | 31.368895 | 0.000 | POINT (109.04720 31.36889) |
8429629 | 8429630 | 109.046931 | 31.368981 | 0.000 | POINT (109.04693 31.36898) |
8429630 | 8429631 | 109.047052 | 31.369000 | 0.000 | POINT (109.04705 31.36900) |
8429631 | 8429632 | 109.046820 | 31.369092 | 0.000 | POINT (109.04682 31.36909) |
8429632 rows × 5 columns
polygonShp.plot()
GeoDataFrame设置坐标系与进行坐标转换
# 设置坐标系
pointShp.set_crs(epsg=4326,inplace=True)
pointShp.to_crs(epsg=32649,inplace=True)
两个GeoDataFrame间进行空间连接
join_inner_df = gp.sjoin(pointShp, polygonShp, how='inner', op='intersects')
join_inner_df
OBJECTID_left | Field1 | Field2 | Field3 | geometry | index_right | OBJECTID_right | Id | gridcode | Shape_Leng | Shape_Area | |
---|---|---|---|---|---|---|---|---|---|---|---|
5 | 6 | 109.352016 | 30.494426 | 39.0 | POINT (341838.913 3374728.302) | 3002 | 3003 | 3003 | 10 | 1620.0 | 74700.000000 |
345 | 346 | 109.340178 | 30.497293 | 1.0 | POINT (340707.335 3375062.731) | 3001 | 3002 | 3002 | 10 | 1380.0 | 60300.000001 |
346 | 347 | 109.340282 | 30.497310 | 7.0 | POINT (340717.363 3375064.410) | 3001 | 3002 | 3002 | 10 | 1380.0 | 60300.000001 |
347 | 348 | 109.340370 | 30.497324 | 6.0 | POINT (340725.746 3375065.815) | 3001 | 3002 | 3002 | 10 | 1380.0 | 60300.000001 |
348 | 349 | 109.340463 | 30.497338 | 5.0 | POINT (340734.720 3375067.319) | 3001 | 3002 | 3002 | 10 | 1380.0 | 60300.000001 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
8428437 | 8428438 | 109.080459 | 31.370270 | 0.0 | POINT (317445.086 3472230.637) | 6 | 7 | 7 | 10 | 1860.0 | 108900.000000 |
8428553 | 8428554 | 109.079964 | 31.370321 | 0.0 | POINT (317398.122 3472237.057) | 6 | 7 | 7 | 10 | 1860.0 | 108900.000000 |
8428554 | 8428555 | 109.080104 | 31.370343 | -1.0 | POINT (317411.484 3472239.253) | 6 | 7 | 7 | 10 | 1860.0 | 108900.000000 |
8428671 | 8428672 | 109.079921 | 31.370442 | -1.0 | POINT (317394.240 3472250.568) | 6 | 7 | 7 | 10 | 1860.0 | 108900.000000 |
8428672 | 8428673 | 109.080068 | 31.370465 | -1.0 | POINT (317408.250 3472252.871) | 6 | 7 | 7 | 10 | 1860.0 | 108900.000000 |
4393811 rows × 11 columns
结果输出join_inner_df.to_csv("./result.csv",columns=['OBJECTID_left','Field1','Field2','Field3'],index=False)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)