数据量很大,而且经常按照某个字段进行条件过滤或者分组时,可以考虑使用分区,例如某种商品的销售情况,经常要查看某个月、某个季度的销售明细或者总计,则可以根据销售日期进行分区,每个月分为一个区,而且最好是能够把不同区的数据分别存放在不同的物理硬盘上,这样在进行查询的时候,如果查询某个月的数据,可以直接在特定硬盘查询,数据量小,速度快,如果查询所有月份的数据,多块硬盘可以并行查询,速度也会明显提高。
将Scholarscope打开,可以通过调整全局设置显示检索出的文献被引用数、所在领域排名、中科院分区等信息。
Scholarscope是专为生物医学科研人员所打造的文献检索插件,可以自动加载Pubmed期刊的影响因子。
软件自带工具箱,一是期刊的影响因子查看,二是文献影响因子的筛选,输入期刊全称或简写可以看到IF及近几年的走势。感兴趣的朋友们赶紧下载吧。
点击自己的PubMed用户名(如果没有可以通过自己的邮箱注册一个,灰常简单),进入后找到API Key Management。
点击Create an API Key,生成密钥,复制密钥后转到Scholarscope全局设置进行粘贴,刷新后即可使用文献界面Abstract显示功能及导出至Endnote等功能。
软件功能:
1、PubMed(美国国立卫生研究院)是当今世界最大的生物医学文献摘要数据库,国内绝大多数高校、科研院所的生物专业人员都需要使用该网站检索文献。
2、只需要打开PubMed的网站并在其中搜索文献,该插件会自动加载期刊的“影响因子”,为科研人员提供参考。
3、该应用不含有任何广告,是免费使用的。
热血江湖数据库分区按以下步骤设置。
1、下载SQLSERVER。
2、安装程序选择SQL2000组件,安装数据库服务器。
3、下一步本地计算机一直默认下一步到选择本地系统用户,选择混合模式默认用户名SA填写密码。
4、填写完密码即可进入服务器设置分区。
个人认为理论上使用表分割在性能上应该和建立表分区查不多,但是,表分割对于所有的数据库都适用,而表分区只能用于oracle这样的特定的数据库;表分区属于数据库物理设计,表分割属于逻辑设计。
表分区:
表分区是ORACLE对于非常大的表进行优化的一种有效方法, 是非常有效的一种手段, 在很多情况下,比你说的表分割更有效,比如,有一个代码表,使用分区表把100万纪录分在10个分区中(ID 每从1到10万为一个分区),那样写查询语句的时候,只要给出查询条件中所需要的代码,ORACLE自动会定位到对应的分区进行查询,大大降低的查询时间 而采用表分割,那必须先根据查询的代码指定所要查询的表,才能找到相应的纪录 而且,如果有下面这样的语句,查询的条件是跨分区的:
SELECT FROM MYTABLE WHERE ID BETWEEN 99000 AND 10111;
在分区表中是非常容易实现的,ORACLE会自动在两个分区中查询;而采用表分割的话是否必须写成两个查询语句在UNION ALL。
事实上,大型的数据库都有对大表的特殊处理方式(类似于分区表),如果太强调可移植性而放弃这些最重要的特性的话,那性能很可能受到很大的影响
即便是oracle数据库,当数据量很大时,用分表比用表分区要快些,尤其是在表用到group by求和等 *** 作。
我也认为表分区要好一些,也就是一般说来的分区表,对这些表 *** 作起来有很多强大的功能,说他强大主要是体现在对与表中有海量数据的情况之下的,试问大家一个其中有1亿条记录的表你是否会经常的将其移植到其他数据库系统当中去呢?
表分区基于物理存储,还有就是基于分区的索引可以使用,很不错的,当然,这些都是在海量数据情况之下的比较,但是如果真要是数据量不大的情况下比较,我想要比较分区表和表分割就没什么意思了。
表分区的效果对硬件有所依赖,而且效果恐怕不如诸位想象中那么好。我做过一点测试,很失望。
而表分割的效率提升在很多时候(不是所有时候)是很明显的。
当然这都是在巨型表的前提下讨论,缩小表和索引的规模有利于提高效率,这正是分割表的特点。
表分割:
1、水平分割:根据一列或多列数据的值把数据行放到两个独立的表中。
水平分割通常在下面的情况下使用:A 表很大,分割后可以降低在查询时需要读的数据和索引的页数,同时也降低了索引的层数,提高查询速度。B 表中的数据本来就有独立性,例如表中分别记录各个地区的数据或不同时期的数据,特别是有些数据常用,而另外一些数据不常用。C需要把数据存放到多个介质上。
例如法规表law就可以分成两个表active-law和 inactive-law。activea-authors表中的内容是正生效的法规,是经常使用的,而inactive-law表则使已经作废的法规,不常被查询。水平分割会给应用增加复杂度,它通常在查询时需要多个表名,查询所有数据需要union *** 作。在许多数据库应用中,这种复杂性会超过它带来的优点,因为只要索引关键字不大,则在索引用于查询时,表中增加两到三倍数据量,查询时也就增加读一个索引层的磁盘次数。
2、垂直分割:把主码和一些列放到一个表,然后把主码和另外的列放到另一个表中。
如果一个表中某些列常用,而另外一些列不常用,则可以采用垂直分割,另外垂直分割可以使得数据行变小,一个数据页就能存放更多的数据,在查询时就会减少I/O 次数。其缺点是需要管理冗余列,查询所有数据需要join *** 作。
mysql数据库KEY分区用法
按照KEY进行分区类似于按照HASH分区,除了HASH分区使用的用户定义的表达式,而KEY分区的
哈希函数是由MySQL
服务器提供。MySQL
簇(Cluster)使用函数MD5()来实现KEY分区;对于使用其他存储引擎的表,服务器使用其自己内部的
哈希函数,这些函数是基于与PASSWORD()一样的运算法则。
“CREATE
TABLE
PARTITION
BY
KEY”的语法规则类似于创建一个通过HASH分区的表的规则。它们唯一的区别在于使用的关键字是KEY而不是HASH,并且KEY分区只采用一个或多个列名的一个列表。
通过线性KEY分割一个表也是可能的。下面是一个简单的例子:
CREATE
TABLE
tk
(
col1
INT
NOT
NULL,
col2
CHAR(5),
col3
DATE
)
PARTITION
BY
LINEAR
KEY
(col1)
PARTITIONS
3;
在KEY分区中使用关键字LINEAR和在HASH分区中使用具有同样的作用,分区的编号是通过2的幂(powers-of-two)算法得到,而不是通过模数算法。
数据库管理空间。多分区数据库查看表空间容器需要点击数据库管理空间,让百分比保持在10%以上即可,数据库是“按照数据结构来组织、存储和管理数据的仓库”。是一个长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。
分表和分区的区别:
一、什么是mysql分表,分区
分表:从表面意思上看呢,就是把一张表分成N多个小表,具体请看:mysql分表的3种方法
分区:分区呢就是把一张表的数据分成N多个区块,这些区块可以在同一个磁盘上,也可以在不同的磁盘上,具体请参考mysql分区功能详细介绍,以及实例
二、mysql分表和分区有什么区别呢
1、实现方式上
①mysql的分表是真正的分表,一张表分成很多表后,每一个小表都是完正的一张表,都对应三个文件,一个MYD数据文件,MYI索引文件,frm表结构文件。
[root@BlackGhost test]# ls |grep useralluserMRG
alluserfrm
user1MYD
user1MYI
user1frm
user2MYD
user2MYI
user2frm
简单说明一下,上面的分表呢是利用了merge存储引擎(分表的一种),alluser是总表,下面有二个分表,user1,user2。他们二个都是独立的表,取数据的时候,我们可以通过总表来取。这里总表是没有MYD,MYI这二个文件的,也就是说,总表他不是一张表,没有数据,数据都放在分表里面。我们来看看MRG到底是什么东西
[root@BlackGhost test]# cat alluserMRG |moreuser1
user2
#INSERT_METHOD=LAST
从上面我们可以看出,alluserMRG里面就存了一些分表的关系,以及插入数据的方式。可以把总表理解成一个外壳,或者是联接池。
②分区不一样,一张大表进行分区后,他还是一张表,不会变成二张表,但是他存放数据的区块变多了。
[root@BlackGhost test]# ls |grep aaaa#P#p1MYD
aa#P#p1MYI
aa#P#p3MYD
aa#P#p3MYI
aafrm
aapar
从上面我们可以看出,aa这张表,分为二个区,p1和p3,本来是三个区,被我删了一个区。我们都知道一张表对应三个文件MYD,MYI,frm。分 区呢根据一定的规则把数据文件和索引文件进行了分割,还多出了一个par文件,打开par文件后你可以看出他记录了,这张表的分区信息,根分表中的MRG有点像。分区后,还是一张,而不是多张表。
如orderid,userid,ordertime,
ordertime<2015-01-01 #p0
ordertime<2015-04-01 #p1
ordertime<2015-07-01 #p2
ordertime<2015-10-01 #p3
ordertime<2016-01-01 #p4
按照时间分区。大部分只查询最近的订单数据,那么大部分只访问一个分区,比整个表小多了,数据库可以更加好的缓存,性能也提高了。这个是数据库分的,应用程序透明,无需修改。
2,数据处理上
①、分表后,数据都是存放在分表里,总表只是一个外壳,存取数据发生在一个一个的分表里面。看下面的例子:
select from alluser where id='12'表面上看,是对表alluser进行 *** 作的,其实不是的。是对alluser里面的分表进行了 *** 作。
②、分区呢,不存在分表的概念,分区只不过把存放数据的文件分成了许多小块,分区后的表呢,还是一张表。数据处理还是由自己来完成。
3、提高性能上
①、分表后,单表的并发能力提高了,磁盘I/O性能也提高了。并发能力为什么提高了呢,因为查寻一次所花的时间变短了,如果出现高并发的话,总表可以根据不同 的查询,将并发压力分到不同的小表里面。磁盘I/O性能怎么搞高了呢,本来一个非常大的MYD文件现在也分摊到各个小表的MYD中去了。
②、mysql提出了分区的概念,我觉得就想突破磁盘I/O瓶颈,想提高磁盘的读写能力,来增加mysql性能。
在这一点上,分区和分表的测重点不同,分表重点是存取数据时,如何提高mysql并发能力上;而分区呢,如何突破磁盘的读写能力,从而达到提高mysql性能的目的。
4、实现的难易度上
①、分表的方法有很多,用merge来分表,是最简单的一种方式。这种方式根分区难易度差不多,并且对程序代码来说可以做到透明的。如果是用其他分表方式就比分区麻烦了。
②、分区实现是比较简单的,建立分区表,根建平常的表没什么区别,并且对开代码端来说是透明的。
三、mysql分表和分区有什么联系呢
1、都能提高mysql的性高,在高并发状态下都有一个良好的表面。
2、分表和分区不矛盾,可以相互配合的,对于那些大访问量,并且表数据比较多的表,我们可以采取分表和分区结合的方式(如果merge这种分表方式,不能和分区配合的话,可以用其他的分表试),访问量不大,但是表数据很多的表,我们可以采取分区的方式等。
分库分表区别:1、什么是分库分表?
从字面上简单理解,就是把原本存储于一个库的数据分块存储到多个库上,把原本存储于一个表的数据分块存储到多个表上。
2、为什么要分库分表?
数据库中的数据量不一定是可控的,在未进行分库分表的情况下,随着时间和业务的发展,库中的表会越来越多,表中的数据量也会越来越大,相应地,数据 *** 作,增删改查的开销也会越来越大;另外,一台服务器的资源(CPU、磁盘、内存、IO等)是有限的,最终数据库所能承载的数据量、数据处理能力都将遭遇瓶颈,。
3、分库分表的实施策略。
如果你的单机性能很低了,那可以尝试分库。分库,业务透明,在物理实现上分成多个服务器,不同的分库在不同服务器上。分区可以把表分到不同的硬盘上,但不能分配到不同服务器上。一台机器的性能是有限制的,用分库可以解决单台服务器性能不够,或者成本过高问题。
当分区之后,表还是很大,处理不过来,这时候可以用分库。
orderid,userid,ordertime,
userid%4=0,用分库1
userid%4=1,用分库2
userid%4=2, 用分库3
userid%4=3,用分库4
上面这个就是一个简单的分库路由,根据userid选择分库,即不同的服务器
分库分表有垂直切分和水平切分两种。
31、何谓垂直切分,即将表按照功能模块、关系密切程度划分出来,部署到不同的库上。例如,我们会建立定义数据库workDB、商品数据库payDB、用户数据库userDB、日志数据库logDB等,分别用于存储项目数据定义表、商品定义表、用户数据表、日志数据表等。
如userid,name,addr一个表,为了防止表过大,分成2个表。
userid,name
userid,addr
32、何谓水平切分,当一个表中的数据量过大时,我们可以把该表的数据按照某种规则,例如userID散列、按性别、按省,进行划分,然后存储到多个结构相同的表,和不同的库上。
例如,我们的userDB中的用户数据表中,每一个表的数据量都很大,就可以把userDB切分为结构相同的多个userDB:part0DB、part1DB等,再将userDB上的用户数据表userTable,切分为很多userTable:userTable0、userTable1等,然后将这些表按照一定的规则存储到多个userDB上。
33、应该使用哪一种方式来实施数据库分库分表,这要看数据库中数据量的瓶颈所在,并综合项目的业务类型进行考虑。
如果数据库是因为表太多而造成海量数据,并且项目的各项业务逻辑划分清晰、低耦合,那么规则简单明了、容易实施的垂直切分必是首选。
而如果数据库中的表并不多,但单表的数据量很大、或数据热度很高,这种情况之下就应该选择水平切分,水平切分比垂直切分要复杂一些,它将原本逻辑上属于一体的数据进行了物理分割,除了在分割时要对分割的粒度做好评估,考虑数据平均和负载平均,后期也将对项目人员及应用程序产生额外的数据管理负担。
在现实项目中,往往是这两种情况兼而有之,这就需要做出权衡,甚至既需要垂直切分,又需要水平切分。我们的游戏项目便综合使用了垂直与水平切分,我们首先对数据库进行垂直切分,然后,再针对一部分表,通常是用户数据表,进行水平切分。
4 分库分表存在的问题。
41 事务问题。
在执行分库分表之后,由于数据存储到了不同的库上,数据库事务管理出现了困难。如果依赖数据库本身的分布式事务管理功能去执行事务,将付出高昂的性能代价;如果由应用程序去协助控制,形成程序逻辑上的事务,又会造成编程方面的负担。
42 跨库跨表的join问题。
在执行了分库分表之后,难以避免会将原本逻辑关联性很强的数据划分到不同的表、不同的库上,这时,表的关联 *** 作将受到限制,我们无法join位于不同分库的表,也无法join分表粒度不同的表,结果原本一次查询能够完成的业务,可能需要多次查询才能完成。
43 额外的数据管理负担和数据运算压力。
额外的数据管理负担,最显而易见的就是数据的定位问题和数据的增删改查的重复执行问题,这些都可以通过应用程序解决,但必然引起额外的逻辑运算,例如,对于一个记录用户成绩的用户数据表userTable,业务要求查出成绩最好的100位,在进行分表之前,只需一个order by语句就可以搞定,但是在进行分表之后,将需要n个order by语句,分别查出每一个分表的前100名用户数据,然后再对这些数据进行合并计算,才能得出结果。
以上就是关于请教下数据库分区 分表主要是解决什么问题出现的全部的内容,包括:请教下数据库分区 分表主要是解决什么问题出现的、scholarscope怎么看分区、热血江湖数据库分区怎么设置等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)