什么是关系数据库的ODS?

什么是关系数据库的ODS?,第1张

ODS是一个面向主题的、集成的、可变的、当前的细节数据集合,用于支持企业对于即时性的、 *** 作性的、集成的全体信息的需求。常常被作为数据仓库的过渡,也是数据仓库项目的可选项之一。根据Bill.Inmon的定义,“数据仓库是面向主题的数据仓库是面向主题的数据仓库是面向主题的数据仓库是面向主题的、集成的集成的集成的集成的、稳定的稳定的稳定的稳定的、、随时间变化的随时间变化的随时间变化的随时间变化的,主要用于决策支持的数据库系统”在Kimball的的的的<<数据仓库生命周期工具集数据仓库生命周期工具集数据仓库生命周期工具集数据仓库生命周期工具集The Data WareHouse Liftcycle Toolkit,他是这样定义的:1. 是 *** 作型系统中的集成,用于当前,历史以及其它细节查询(业务系统的一部分)2. 为决策支持提供当前细节数据(数据仓库的一部分)因此 *** 作数据存储(ODS) 是用于支持企业日常的全局应用的数据集合,ODS的数据具有面向主题、集成的、可变的和数据是当前的或是接近当前的4个基本特征。同样也可以看出ODS是介于DB和DW 之间的一种数据存储技术,和原来面向应用的分散的DB相比,ODS中的数据组织方式和数据仓库(DW)一样也是面向主题的和集成的,所以对进入ODS的数 据也象进入数据仓库的数据一样进行集成处理。另外ODS只是存放当前或接近当前的数据,如果需要的话还可以对ODS中的数据进行增、删和更新等 *** 作,虽然DW中的数据也是面向主题和集成的,但这些数据一般不进行修改,所以ODS和DW的区别主要体现数据的可变性、当前性、稳定性、汇总度上。由于ODS仍然存储在普通的关系数据库中,出于性能、存储和备份恢复等数据库的角度以及对源数据库的性能影响角度,个人不建议ODS保存相当长周期的数据,同样ODS中的数据也尽量不做转换,而是原封不动地与业务数据库保持一致。即ODS只是业务数据库的一个备份或者映像,目的是为了使数据仓库的处理和决策支持要求与OLTP系统相隔离,减少决策支持要求对OLTP系统的影响。一般在带有ODS的系统体系结构中的ODS都具备如下几都具备如下几个作用:1) 在业务系统和数据仓库之间形成一个隔离层。一般的数据仓库应用系统都具有非常复杂的数据来源,这些数据存放在不同的地理位置、不同的数据库、不同的应用之中,从这些业务系统对数据进行抽取并不是一件 容易的事。因此,ODS用于存放从业务系统直接抽取出来的数据,这些数据从数据结构、数据之间的逻辑关系上都与业务系统基本保持一致,因此在抽取过程中极 大降低了数据转化的复杂性,而主要关注数据抽取的接口、数据量大小、抽取方式等方面的问题。2) 转移一部分业务系统细节查询的功能在数据仓库建立之前,大量的报表、分析是由业务系统直接支持的,在一些比较复杂的报表生成过程中,对业务系统的运行产生相当大的压力。ODS的数据从粒度、 组织方式等各个方面都保持了与业务系统的一致,那么原来由业务系统产生的报表、细节数据的查询自然能够从ODS中进行,从而降低业务系统的查询压力。3) 完成数据仓库中不能完成的一些功能。一般来说,带有ODS的数据仓库体系结构中,DW层所存储的数据都是进行汇总过的数据和运营指标,并不存储每笔交易产生的细节数据,但是在某些特殊的应用中,可能需要 对交易细节数据进行查询,这时就需要把细节数据查询的功能转移到ODS来完成,而且ODS的数据模型按照面向主题的方式进行存储,可以方便地支持多维分析 等查询功能。即数据仓库从宏观角度满足企业的决策支持要求,而ODS层则从微观角度反映细节交易数据或者低粒度的数据查询要求。在一个没有ODS层的数据仓库应用系统体系结构中,数据仓库中存储的数据粒度是根据需要而确定的,但一般来说,最为细节的业务数据也是需要保留的,实际上 也就相当于ODS,但与ODS所不同的是,这时的细节数据不是“当前、不断变化的”数据,而是“历史的,不再变化的”数据。这样的数据仓库的存储压力和性能压力都是比较大的,因此对数据仓库的物理设计和逻辑设计提出了更高的要求。

ods层数据导入的方法:

1、创建临时表并加载数据。

2、创建ods库表。

3、将数据导入orc格式表中,就完成了。

ODS层介绍:

作用:数据接口层,主要作用是接入每天的数据,然后进入DWS层进行主题分类。 命名规范:ODS_表名字 (建议表明跟文件名字一样) 最长30个字符。 保留策略:目前保留所有原系统的数据,在将来会按照实际需要更小的缩小ODS层数据的保留策略。

*** 作数据存储ODS(OperationalData Store)是数据仓库体系结构中的一个可选部分,由业务系统产生的报表、细节数据的查询自然能够从ODS中进行,从而降低业务系统的查询压力。

ODS设计与DW设计在着眼点上有所不同,ODS重点考虑业务系统数据是什么样子的,关系如何,在业务流程处理的哪个环节,以及数据抽取接口等问题。

ODS的作用:

ODS是一个将面向主题的,动态增长的,非实时的,消除了原始数据库差异的,对原始库最大限度进行冗余处理后得到的数据集,通过ODS消除了数据间的关联细节,实现了对某一领域数据进行统一处理(比如查询、统计)的快捷方法。

ODS的主要目的是为了降低数据仓库系统和业务系统之间的紧耦合。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/6653174.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-03-26
下一篇 2023-03-26

发表评论

登录后才能评论

评论列表(0条)

保存