就业市场上,机器学习工程师总是受到质疑,人们不相信他们数学功底深厚。事实上,所有机器学习算法的本质都是数学问题,无论是支持向量机、主成分分析还是神经网络最终都归结为对偶优化、谱分解筛选和连续非线性函数组合等数学问题。只有彻底理解数学,才能正真掌握这些机器学习算法。
Python中的各种数据库能帮助人们利用高级算法来完成一些简单步骤。例如包含了K近邻算法、K均值、决策树等算法的机器学习算法库Scikit-learn,或者Keras,都可以帮助人们构建神经网络架构,而不必了解卷积神经网络CNNs或是循环神经网络RNNs背后的细节。
然而,想要成为一名优秀的机器学习工程师需要的远不止这些。在面试时,面试官通常会问及如何从零开始实现K近邻算法、决策树,又或者如何导出线性回归、softmax反向传播方程的矩阵闭式解等问题。
回顾一些微积分的基本概念助你准备面试,如一元和多元函数的导数、梯度、雅可比矩阵和黑塞矩阵。同时,本文还能为你深入研究机器学习、尤其是神经网络背后的数学运算打下良好的基础。这些概念将通过5个导数公式来展示,绝对是面试必备干货。
导数1:复合指数函数
指数函数非常基础常见,而且非常有用。它是一个标准正函数。在实数ℝ中eˣ > 0,同时指数函数还有一个重要的性质,即e⁰ = 1。
另外,指数函数与对数函数互为反函数。指数函数也是最容易求导的函数之一,因为指数函数的导数就是其本身,即(eˣ)’ = eˣ。当指数与另一个函数组合形成一个复合函数时,复合函数的导数就变得更为复杂了。在这种情况下,应遵循链式法则来求导,f(g(x))的导数等于f’(g(x))⋅g’(x),即:
运用链式法则可以计算出f(x)= eˣ²的导数。先求g(x)=x²的导数:g(x)’=2x。而指数函数的导数为其本身:(eˣ)’=eˣ。将这两个导数相乘,就可以得到复合函数f(x)= eˣ²的导数:
这是个非常简单的例子,乍一看可能无关紧要,但它经常在面试开始前被面试官用来试探面试者的能力。如果你已经很久没有温习过导数了,那么很难确保自己能够迅速应对这些简单问题。虽然它不一定会让你得到这份工作,但如果你连这么一个基本问题都回答不上,那你肯定会失去这份工作。
导数2:底数为变量的复变指数
复变指数函数是一个经典面试问题,尤其是在计量金融领域,它比科技公司招聘机器学习职位更为看重数学技能。复变指数函数迫使面试者走出舒适区。但实际上,这个问题最难的部分是如何找准正确的方向。
当函数逼近一个指数函数时,首先最重要的是要意识到指数函数与对数函数互为反函数,其次,每个指数函数都可以转化为自然指数函数的形式:
在对复变指数函数f(x) = xˣ求导前,要先用一个简单的指数函数f(x) = 2ˣ来证明复变函数的一种性质。先用上述方程将2ˣ 转化为exp(xln(2)),再用链式法则求导。
现在回到原来的函数f(x)=xˣ,只要把它转化为f(x)=exp(x ln x),求导就变得相对简单,可能唯一困难的部分是链式法则求导这一步。
注意这里是用乘积法则(uv)’=u’v+uv’来求指数xln(x)的导数。
通常情况下,面试官提问这个函数时不会告诉你函数定义域。如果面试官没有给定函数定义域,他可能是想测试一下你的数学敏锐度。这便是这个问题具有欺骗性的地方。没有限定定义域,xˣ既可以为正也可以为负。当x为负时,如(-09)^(-09),结果为复数-105–034i。
导数的两大特性:1导数的介值性(达布定理)。2导数无第一类间断点
证法二:不妨设f'₊(a)<f'₋(b),对任意介于f'₊(a)、f'₋(b)的实数k有:f'₊(a)<k<f'₋(b)
构造函数:F(x)=f(x)-kx。
若F(a)=F(b),则由罗尔中值定理:存在ε∈(a,b)使F'(ε)=0。
不妨设F(a)<F(b),又F'₊(a)<0,由极限保号性,存在χ∈(a,b)使F(χ)<F(a)。从而F(χ)<F(a)<F(b)。
由介值定理存在ζ∈(χ,b),使F(ζ)=F(a)。
又由罗尔中值定理,存在ξ∈(a,ζ),使F'(ξ)=0。
所以无论如何总存在x∈(a,b)使F'(x)=0即f'(x)=k。
导函数的零点定理:其实和达布定理是等价的,可以等同
2导数无第一类间断点
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。
导数是函数的局部性质。一个函数在某一点的导数描述了这个函数在这一点附近的变化率。如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。然而,可导的函数一定连续;不连续的函数一定不可导。
对于可导的函数f(x),x↦f'(x)也是一个函数,称作f(x)的导函数(简称导数)。寻找已知的函数在某点的导数或其导函数的过程称为求导。
实质上,求导就是一个求极限的过程,导数的四则运算法则也来源于极限的四则运算法则。反之,已知导函数也可以反过来求原来的函数,即不定积分。
微积分基本定理说明了求原函数与积分是等价的。求导和积分是一对互逆的 *** 作,它们都是微积分学中最为基础的概念。
层次、关系和网状。根据数据库基础知识得知,数据库管理系统常见的三种数据类型是层次、关系和网状,其中层次型是用树型结构表示实体及实体之间的联系,网状形有网状结构表示实体及实体之间的联系,关系型用二维表来表示实体及实体之间的联系。数据库是一个按数据结构来存储和管理数据的计算机软件系统。
复合函数求导法则如下:
一般地,对于函数y=f(u)和u=g(ⅹ)复合而成的函数y=f(g(ⅹ)),它的导数与函数y=f(u),u=g(x)的导数间的关系为yⅹ'=yu'·uⅹ',即y对x的导数等于y对u的导数与u对x导数的乘积。
总的公式f'[g(x)]=f'(g)×g'(x)
比如说:求ln(x+2)的导函数
[ln(x+2)]'=[1/(x+2)] 注:此时将(x+2)看成一个整体的未知数x' ×1注:1即为(x+2)的导数
复合函数求导的步骤:
1、分层:选择中间变量,写出构成它的内,外层函数。
2、分别求导:分别求各层函数对相应变量的导数。
3、相乘:把上述求导的结果相乘。
4、变量回代:把中间变量回代。
主要方法:
先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。例如,复合函数求导。
求复合函数的导数注意:
1、分解的函数通常为基本初等函数。
2、求导时分清是对哪个变量求导。
3、计算结果尽量简单。
4、对含有三角函数的函数求导,往往需要利用三角恒等变换公式,对函数式进行化简,使函数的种类减少,次数降低,结构尽量简单,从而便于求导。
5、分析待求导的函数的运算结构,弄清函数是由哪些基本初等函数通过何种运算而构成的,确定所需的求导公式。
在数据库中,数据之间的关系被称为“关系(Relationship)”,它是指不同表之间数据的联系。关系分为三种类型:一对一、一对多和多对多。一对一关系指两个表中的数据只有一对一的关系,一个表中的主键对应另一个表中的外键;一对多关系指一个表中的数据可以对应到另一个表中的多条数据,一个表中的记录对应另一个表中多个记录;多对多关系指两个表中的数据互相关联,每个表中的记录都可以对应到另一个表中的多个记录。
关系是数据库设计的重要概念之一,是保证数据准确性和完整性的关键。一个好的数据库设计必须建立正确的数据关系,以保证数据的一致性和完整性。关系型数据库通过多个表之间的关系来存储和管理数据,使得数据的查询、修改和更新更加高效和方便。
如果sqlldr需加载大量数据,那么Oracle在加载时写redo log和archive log所花的时间会占到加载总时间很大部分并且不能被忽略;同时,也会产生大量的archive log文件侵蚀你的磁盘空间。
为了节省写redo log的时间、节省写archive log所消耗的磁盘空间,你可以规定sqlldr在加载时对新载入数据不产生redo信息,结果是加载速度提高了、归档日志空间也节省了不少,但是,对新载入的数据来说将来的介质恢复就没有保护作用了。
因为,在以前的备份中没有刚刚载入的数据,这容易理解;并且,你使用了unrecoverable,那么在日志中也没有对新载入数据和载入动作的详细描述。如果此时数据文件被破坏,刚刚载入的数据明显无法恢复。
结论是unrecoverable可以提高加载的速度,推荐在加载完成后立即对数据库或至少对表空间备份。
以上就是关于帮我发一张函数的求导公式和特殊函数的求导公式,谢谢!全部的内容,包括:帮我发一张函数的求导公式和特殊函数的求导公式,谢谢!、导数介值定理、数据库管理系统常见的三种数据类型等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)