微生物菌种的微生物菌种资源状况

微生物菌种的微生物菌种资源状况,第1张

我国是生物多样性最为丰富的国家之一,由于历史的原因,从微生物资源的保藏数量、保藏质量,远远落后于日本、美国等生物多样性不丰富的国家,对微生物资源的研究也与资源大国的地位不符,微生物资源收集、保存、研究的积累量偏低将成为微生物学研究及产业发展的瓶颈。微生物的类群多样性最丰富,功能也多种多样,微生物新种属的发现认知,将是一个长期的过程。从巴斯德研究酵母发酵开始算人类有意识利用微生物资源开始的话,至今已有100多年的历史,20世纪50年代后,则是大规模利用微生物资源的黄金期,并且取得了辉煌的成就。80年代以后,由于分子生物学技术的发展,才意识到我们所认识的微生物仅仅是实有数的1%~10%,甚至不到千分之一。例如,我们所知道的真菌仅占5%,实际可能有150多万种,所知道的细菌仅占12%,实际可能有4万种。如果说我们所认识到的微生物资源仅占实有数的10%,实际被人们利用的不到01%,对微生物功能多样性的认识有待于进一步加强,微生物的开发利用有巨大的提升空间。ICCC-11会议上的微生物生态型(phenotype)的提出,对于理解、研究微生物资源的多样性具有深刻意义。

我国的微生物菌种资源保藏开展时间较早,但发展过程比较曲折。我国近代微生物菌种保存始于上个世纪20年代,但只有零星的菌种存放在有关酿造实验室,建国之前,国家一直处于战乱时期,对微生物种质资源收集、保藏工作不重视,没有专门的机构,菌种保藏、检测、鉴定技术及设施相当落后,将数量比较多的菌种资源加以收集、保存,则是30年代后期方心芳先生在黄海化学工业研究社进行的。建国后一些研究单位相继成立了微生物菌种保藏组,如中国农业科学院土壤肥料研究所,收集以根瘤菌以微生物肥料、农用抗生素等农业微生物菌种中国医药生物制品检定所,收集医学细菌微生物菌种等。1979年,在原国家科委的组织领导下,召开了第一届全国菌种保藏会议,成立了中国微生物菌种保藏管理委员会,成立了6个专业性保藏管理中心。1984年7月,召开了第二届全国菌种保藏会议,成立了第七个专业性保藏管理中心,分别是普通微生物、农业微生物、工业微生物、兽医微生物、林业微生物、医学微生物、抗生素(后改为药用微生物)菌种中心,7个中心在各自专业领域内收集、鉴定、评价、保藏、供应微生物菌种,并承担国际交流任务。此后教育部与国家海洋局成立典型培养物和海洋微生物菌种保藏管理中心。在我国除分布有以上9个微生物菌种保藏管理中心外,一些大学、研究所的科研人员,也从事专业、特色微生物菌种资源的收集、鉴定、保藏工作,如中国农业大学根瘤菌微生物菌种保藏中心等。自2003年开始,在微生物项目组的组织协调下,在全国范围内形成了以9个中心为核心,以专业特色收集、保藏、鉴定为支撑的微生物菌种资源共享服务网络,多次出版菌种目录,开发建设了10个网站,以及数据库检索系统,长期以来,一直有专门的科技人员从事微生物菌种的鉴定、保藏、评价、供应以及共享交流等服务。

参与项目建设的单位隶属于农业部、教育部、中国科学院等8个部门, 参与项目建设的80余个课题单位,分布于23个省27个城市。共计约有970余人参与项目工作,在项目人员组成中,其中,高级职称人员470余人,中级职称人员280余人,初级职称人员140余人,其他人员80人,其中博士260余人,硕士240余人,学士280人,其他学历180余人。

根据《微生物菌种资源共性描述规范》,结合微生物菌种保藏工作的需要,并参考OECD的BRC工作组建议的微生物菌种数据信息内容,由项目承担单位完成与E-平台对应的统一数据结构、统一功能的微生物菌种资源信息管理模块系统的开发工作,提供项目参加单位使用。该模块包括微生物菌种资源信息数据库、培养基数据库、文献数据库和资源管理单位信息数据库,共包括111个数据项,涵盖了菌种名称、来源、生物安全、用途、培养及保藏方法、共享利用、文献、分类学特征(形态、理化性状、化学和分子特征)、以及资源管理单位信息等多个方面,80%以上的资源进行了数据化管理。并根据实际应用情况、共性描述标准的修订、以及E-平台的需要,不断进行调整和功能完善。此外,项目组根据“择需择重”的原则,项目组开发了细菌、酵母、放线菌、小型丝状真菌、食用菌、病毒等数据库数据库。

如何对一株微生物进行分类鉴定和命名

(1)常规鉴定

常规鉴定内容有形态特征和理化特性。形态特征包括显微形态和培养特征;理化特性包括营养类型、碳氮源利用能力、各种代谢反应、酶反应和血清学反应等。(2)BIOLOG碳源自动分析鉴定

BIOLOG鉴定系统以微生物对不同碳源的利用情况为基础,检测微生物的特征指纹图谱,建立与微生物种类相对应的数据库。通过软件将待测微生物与数据库参比,得出鉴定结果。(3)分子生物学鉴定

提取细菌基因组DNA,然后PCR扩增16srDNA片段并测序,将结果与GeneBank或者Eztaxon对比分析,一般序列相似度在97%以上就可以认为是同种细菌,该方法也是目前微生物分类学研究普遍采用的鉴定方法。——源自百度百科

1酸碱反应:细菌代谢碳水化合物,一般产生酸性物质;分解蛋白质或氨基酸,则产生碱性物质,根据不同细菌的理化性质不同,测定细菌的分解底物导致ph值变化而产生的不同颜色,来判断菌种。2酶谱分析:根据细菌生长产生酶的特性,在测定底物中加入基质。使其与细菌生长过程中的酶结合成荧光物质,可以在较短的时间判定菌种。3高压液相色谱分析:用气相色谱检测细菌在液体培养基中的代谢产物(挥发和非挥发脂肪酸),结果与数据库数据比较后,得出鉴定结果。4代谢指纹法:其原理是根据细菌对碳源(或氮源)利用的差异来区别和鉴定细菌,不同的细菌会利用不同碳源(或氮源)进入新陈代谢过程(称为呼吸),而对其他一些碳源(或氮源)则无法利用,将每种细菌能利用和不能利用的一系列碳源(或氮源)进行排列组合,就构成了该种细菌特定的代谢指纹,由于细菌在利用碳源进行呼吸时,会发生一系列的氧化-还原反应,产生电子,ttc(四唑紫,2,3,5-triphenyltetrazoliumchloride)在呼收电子后,会由无色的氧化型转变为紫色的还原型,通过肉眼观察或计算机控制的读数仪,将反应结果同数据库中的指纹进行比对,从而得到细菌的鉴定结果。

宏基因组学(Metagenomics)又叫微生物环境基因组学、元基因组学。它通过直接从环境样品中提取全部微生物的DNA,构建宏基因组文库,利用基因组学的研究策略研究环境样品所包含的全部微生物的遗传组成及其群落功能。它是在微生物基因组学的基础上发展起来的一种研究微生物多样性、开发新的生理活性物质(或获得新基因)的新理念和新方法。其主要含义是: 对特定环境中全部微生物的总DNA(也称宏基因组,metagenomic)进行克隆,并通过构建宏基因组文库和筛选等手段获得新的生理活性物质;或者根据rDNA数据库设计引物,通过系统学分析获得该环境中微生物的遗传多样性和分子生态学信息。

菌种筛选是微生物采油技术的关键。筛选MEOR菌种所遵循的原则,是所选择的微生物应能适应油层环境条件。首先,所选菌种能在油藏条件下生存、运移并能产生大量对驱油有利的代谢产物;其次,从经济角度出发,所选菌种能以原油为营养源。不同的生物工程目的所需的微生物代谢产物有所不同。MEOR菌种的选择可参考表1[26]。

目前菌种筛选主要向两方面发展[27],一是提高菌种耐温性,以适合更广的油藏范围;二是只提供部分无机营养物,希望以原油为碳源,降低注入营养物成本。还有的筛选希望得到耐矿化度的菌种。目前已报道的菌种最高可适应85~95℃的油藏条件,耐矿化度高达17g/L[28],但此条件下活性如何尚无明确报道。大部分油田筛选和应用的菌种是烃类氧化菌系,可降解部分正构烷烃,对原油有一定降黏作用,适合30~60℃温度[29];也有些工艺不需要筛选菌种,如内源微生物驱油[30]和活性污泥驱油。微生物种类鉴定比较复杂,仅少数油田对其使用的微生物进行了属水平的鉴定和对环境的毒性鉴定。胜利油田初步建立了石油微生物菌种库以及菌种数据库,收录了100多株菌种的微生物学特征、性能参数和应用情况。 MEOR菌种既可以是好氧菌,也可以是厌氧菌。油藏处于缺氧状态,而在油藏处理过程中不能保持绝对无氧状态,故所用菌种最好为兼性厌氧菌。兼性厌氧菌的优势还在于可以在好氧条件下培养,以缩短培养时间。好氧代谢比厌氧代谢快,先进行好氧培养,后进行厌氧培养,以加快筛选速度。另外,混合菌种可能具有协同作用,驱油效果优于单株菌。菌种的配伍性需通过模拟实验确定。

菌种筛选步骤如下:含菌样品 富集好氧培养 单株菌分离纯化 穿刺接种 富集厌氧培养 室内初步模拟实验 生化、代谢产物测试 物理模拟实验 确定菌种组合。

穿刺接种的目的在于初步判断菌种的需氧性,将好氧菌去除,以减轻下一步厌氧筛选的工作量。室内初步模拟实验就是模拟目的油藏的环境条件,检验试验菌能否在该油藏环境下生存[31]。 菌种性能评价对菌种进行性能评价的目的在于筛选有利于微生物采油的菌种。菌种性能研究菌种性能评价包括其生物学特征、代谢产物分析、稳定性及对油藏环境的适应性,混合菌还需要进行菌株复配实验[32]。一般用于评价的指标是:最大菌体浓度,表面张力降低幅度,培养液pH值及粘度的变化,产生气体的量及组成,原油组成变化等。已报道的有以下3类评价方法。

分析原油被微生物发酵前后的变化

将微生物与原油共同培养后分离出原油,测试原油被发酵前后的变化,包括:①测试发酵前后的黏度、凝固点、含蜡量等物性变化。②用恩氏蒸馏法测试组分变化,发酵后轻馏分增加越多,说明微生物作用越好。③用色谱法分析正构烷烃组分变化,姥鲛烷/C17、植烷/C18比值反映原油流动性,发酵后其值上升说明原油流动性得到改善。不少实验通过测定主峰碳的变化[29,33]或咔唑类化合物的变化来确认原油降解程度。④用色谱柱分离法分析各族组分相对含量变化,了解微生物对哪个族组分影响较大,多数实验证明对正构烷烃有明显影响,也有实验证明对胶质、沥青质有影响。

分析菌液的变化

在有原油存在的环境中培养微生物,测试菌液作用前后的酸度、界面张力变化以及产气量[36]。对代谢产物中生物表面活性剂的分析研究较多,包括影响 其产生的因素、对原油的作用效果以及其成分等[37],但停留在单项成分的定性或定量分析。

岩心微生物驱油试验

应用人造岩心或天然岩心建立微生物驱油的Lazar模型,一般试验过程是:岩心饱和水、饱和油后水驱,水驱到含水98%或100%时注入一定量配制好的菌液,放入恒温箱培养,测试从模型中排出的液体和气体。另一种是高压驱油模型,岩心培养之前先加压,关闭岩心两端阀门在高压条件下培养一段时间,然后再水驱,测试采收率提高情况。岩心驱油试验还用于研究微生物驱的相对渗透率变化[38] 、微生物用量或微生物段塞与采收率的关系。由于条件限制,多数油田最常测试的是微生物作用前后原油黏度变化。

目前国内在菌种评价方面忽视室内实验条件与现场应用条件的不同,因此偏差较大。微生物本身和其代谢产物都受地层条件的影响,温度、压力、矿化度和岩性等因素的影响还存在一些未知的关系,需要通过室内实验了解各自影响程度。建立完整可靠的评价方法是今后菌种性能评价重点攻关的内容之一。 微生物采油的方法及其优点微生物采油基本方法广义地说主要包括两大类:一类是利用微生物产品如生物聚合物和生物表面活性剂作为油田化学剂进行驱油,称为微生物地上发酵提高采油率工艺,即生物工艺法,目前该技术在国内外已趋成熟;另一类是利勇微生物及其代谢产物提高采油率,主要是利用微生物地下发酵和利用油层中固有微生物的活动,称为微生物地下发酵提高采收率方法 狭义地说微生物采油是指利用微生物地下发酵提高采收率方法。对与厚意种方法,油藏微生物生态问题长期注水开发油藏的地下应存在相对稳定的原地微生物生态系统。微生物采油过程中,注入的微生物与原地微生物能否兼容,注入的营养对原地微生物有什么影响,这些问题还没有认真研究。这些问题是微生物采油技术研究的重要组成部分,也可能成为该项技术发展的突破口。

321微生物采油的地层环境

各种EOR技术适用的油层条件有一定限制。MEOR也不例外,油层条件有一定限制。在此对现在的E

OR应用界限加以论述。

首先,油层岩质以砂岩或碳酸盐岩为对象,它对微生物没有影响[39]。以碳酸盐岩为对象时,可以期待代谢所产生的酸性物质对碳酸盐岩有溶解作用。还必须考虑粘土矿物等对菌体及营养物的吸附。MEOR微生物与营养源必须在岩石孔隙中移动,在油层中扩散。在pH与离子强度适当的条件下,粘土矿物使微生物在表面上吸附,阻碍微生物在孔隙中的移动和扩散。因此,采用目的油层的岩心,通过微生物渗透性测试进行探讨是必要的。孔隙度与渗透率等因素对微生物的移动,增殖及代谢有影响。微生物的形态有球菌,杆菌,螺旋菌等,长05—10μm,宽05—20μm。细菌需要在目的油层中移动,一定程度的增殖空间是必要的,即某种程度的渗透率是必要的。据报道,细菌可在75×10-3μm2以下的岩心中运移,但通常适用下限为150×10-3μm2左右,在300×10-3μm2以上则更合适。

关于油层深度界限,其实是温度及压力界限,深度是受限制的[40]。微生物生长温度上限,最近研究热水矿场等所得到的超嗜热菌为110℃,一般的好热微生物为100℃左右。但是,适应超过70℃油层的事例,至今几乎没有报道。若以70℃为上限温度,深度界限大约为8000英尺(24384m)。油藏中的地层水是微生物群体耐于生长和代谢的媒体,地层水的关盐度,活度,pH以及地层水的溶解的物质对微生物群体的生长和代谢起着重要的作用,超过一定上限值而存在的有好盐性、好酸性及好碱性微生物,一般微生物难适应。以上所述的各种条件是目前水平下的限制,如果新发现特异功能微生物,有可能适应超过这些条件的更广泛的油层[41]。

微生物采油技术的选井条件目前在国内普遍使用的微生物菌液的适用条件为[42]:①油层温度<120℃;②地层水氯离子含量<10×104mg/L;③有毒离子含量(砷,汞,镍,硒)<0~15mg/L;④油层渗透率>50×10-3μm2;⑤原油密度<0900g/cm3;⑥残余油饱和度>25%;⑦油藏含水率>5%。

322营养

对于微生物的营养问题涉及两个方面,一个是微生物在注入油井前培养对应的培养基的营养成分,另一个是在井里所需要添加的营养物质。

培养基的筛选虽然在矿场应用中细菌是以原油为营养物质生存繁殖的,但是用于矿场的菌液是在室内用特殊的营养物质精心培养出来的,这些营养物质通常称为培养基,主要由有机物质和微量元素混合而成,不同的细菌所需要的培养基不一定相同,用不同的培养基培养同一种细菌,其具备的功能也可能不同,甚至会相差很大。要使一种培养基既能够同时满足多种微生物繁殖的要求,又能够使它们在较短的时间里繁殖达到最大密度和具有最强的活性,并且使它们完全保持所需要的使用功能,是一项难度很大的研究工作[43]。

微生物菌种在地下需要一定量的营养物以维持其生长、繁殖和代谢。营养物主要是碳源、氮源、磷源,其中碳源为地层原油,无须补给;其他营养成分需要添加。通过不同类型营养剂筛选实验,选出由铵盐、磷酸盐和生长因子等组成,并用矿场注入污水配制的营养溶液。由于地层水或注入水中含有微生物生长所需微量元素,不需要补充。所以地层状况决定了所需要添加的营养物质[44]。配伍、分散原油等实验结果表明,所选营养液与地层水(或污水)配伍性良好,菌的生长能力与油的乳化性也较好。

对注入地层的微生物所需的营养物质应当是在地层条件下具有热稳定性和化学稳定性的,而且不会与地层液体中的无机盐发生反应而沉淀,以免阻塞地层。另外,在含黏土的地层中,营养液应不至于引起地层黏土膨胀和微粒运移。为避免发生这些问题,确保工程成功,应利用地层水样和岩样进行相关这方面的室内实验。

323化学剂

油田开发的各个环节基本上都要使用化学剂,只是目的不同,使用的化学剂种类不同,如钻井、修井、完井,压裂、堵水、调剖、固砂过程使用的化学剂,生产过程中使用的缓蚀、防垢、除垢、杀菌剂等油田注入水常用处理剂,油田开发后期化学法提高采收率技术使用的大量驱油剂。这些化学剂视浓度的不同对微生物产生不同程度的影响。相对而言,用量较大的化学剂如注入水处理剂和三次采油驱油剂的影响可能更大。

化学剂对微生物的影响主要有两方面。一是化学剂对微生物细胞结构的影响,一些具有表面活性的物质可直接破坏细胞结构,使微生物死亡。二是化学剂与微生物细胞中某些生化物质结合,使其丧失原有的生化性能,不能正常生长代谢,最终导致死亡。无论是哪一种影响,都与化学剂浓度密切相关。只有化学剂浓度超过一定范围,才能对微生物产生影响。如目前油田注入污水处理多用阳离子季铵盐类以及其与氧化剂的复配物,一般加药量在9~10mg/L,当细菌数高于102个/mL时,药剂加量须加大2~3倍[45]才能控制细菌的生长。在实施聚合物驱的区块常出现高细菌腐蚀速率现象[46],也是注入的驱油剂中聚丙烯酰胺和甲醛共同影响地层中细菌生长造成的。

当化学剂对微生物生长的抑制作用影响到微生物采油工艺的实施时,就必须消除这种抑制作用。要从根本上消除化学剂对微生物生长的抑制作用,必须从微生物菌种筛选及微生物育种着手。(1)在含有化学剂的地层水中,往往存在由于发生自发突变而能抵抗化学剂不利影响的微生物。可以从产出液中筛选这些微生物,经过二次筛选得到的采油用菌种既可以满足微生物采油的需要又能抵抗化学剂的不利影响。(2)工业菌种的培育运用遗传学原理和技术对某个用于特定生物技术目的的菌株进行多方位的改造,以增加新的性状。通过微生物育种,可以获得在不利化学剂存在条件下生长良好的采油菌种,从而消除化学剂对微生物采油的不利影响。用于工业菌种育种的方法主要有诱变和基因重组。

324本原微生物问题

长期注水开发油藏的地下应存在相对稳定的原地微生物生态系统。对原地微生物生态系统中可以划分为两类[47],一类是不利于油藏开采的细菌群落,系指消耗存在于海水中或存在于地层水或含水层水中组成能源链的硫基化合物,而又消耗存在于地层中作为细菌食物的单碳化合物的细菌群落。细菌生长所排泄出的废物,包括硫化氢在内,不但对人有毒害,而且还会使管材和地面油罐等设施遭受腐蚀。还有些有害的微生物在井筒周围(泥浆滤饼和地层中)生长和繁殖得很快,以致使岩石孔隙遭受堵塞,从而降低渗透率;但另有一些微生物却能使所添加的因增产增注后失效的化学试剂分解,而延长井筒的寿命。另一类是有利于采油的微生物—有益的细菌群落,由于在其生长繁殖过程中,能产生诸如溶剂、酸类、气体、表面活性剂和生物聚合物等有效化合物,因而可提高石油采收率。这些细菌及其副产物也就在油层中起到了有效的作用。为此,石油微生物学家都在试图寻找既能使不利于采油的细菌得到抑制而又能促使有利于采油的细菌得到生长和繁殖的方法。

微生物采油过程中,注入的微生物与原地微生物能否兼容,注入的营养对原地微生物有什么影响,这些问题还没有认真研究。这些问题是微生物采油技术研究的重要组成部分,也可能成为该项技术发展的突破口。Yonebayashi[48]在进行境界试验(Halo试验)的同时,采用流体培养基的培养试验到了如下3种结果。①BsubtilisRTC 4126与113菌,只出现竞争对手113菌落,被检菌的增殖受到抑制。②ECloacaeTU 7 A与113菌,双方都出现菌落,但是没有Halo形成,双方互不影响。③BlicheniformisTRC 182A与118菌,被检菌与竞争菌之间形成典型的境界,被检菌抑制竞争菌。形成透明圈的主要原因,被认为是由于TRC182A所生成的表面活性剂造成了118菌的溶菌。在流体培养试验结果的探讨中,也得到了与境界试验相同的3种类型。

由于本原微生物中本身存在有利于采油的菌种,所以如果利用好这些本原微生物,可以减少微生物菌体对油藏环境的不适应性和与本原微生物的不相容性。所以本原微生物采油技术成为一比较好的研究方向[49]。

由于微生物采油的地层环境对于微生物采油的这些影响,在进行微生物采油前应对油田进行调查。选择矿场试验油田时应了解油层温度、渗透率、孔隙度、原油性质、储层岩性、注水末期等因素的影响。选择一定的注水井和生产井,采集油层水样及注入水样,对这些试样中的微生物种类进行调查,同时采集注入装置处理后的水进行同样的分析作为参考并对存在于油层中的本源微生物进行调查。

值得一提的是,微生物的筛选与油藏微生物生态问题是密不可分的。一定的油藏微生物生态系统决定了微生物菌种的筛选,而已掌握微生物菌种的特性反过来决定了微生物采油的油井选择。

以上就是关于微生物菌种的微生物菌种资源状况全部的内容,包括:微生物菌种的微生物菌种资源状况、如何对一株微生物进行分类鉴定和命名、如何通过实验测定微生物培养中的真实产率系数和维持系数等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9340128.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存