ipath代谢通路富集原理

ipath代谢通路富集原理,第1张

生物完整代谢路径、次级代谢物合成途径、抗生素合成途径、微生物代谢路径原理。生物完整代谢路径是指一个生物从开始到结束所经历的所有步骤。它包括生物的能量生成、中间产物生成、代谢产物合成、代谢调节和微生物的代谢等。其中,生物的能量生成过程是指生物通过合成营养物质来产生能量,而中间产物生成过程是指生物将某些有机化合物转化为次级代谢物,代谢产物合成过程是指生物将其转化为抗生素等次级代谢物。微生物代谢路径是指微生物(包括细菌、真菌和放线菌等)在代谢过程中所经历的所有步骤。iPath中的代谢路径图基本遵照KEGG数据库进行构建,其中点表示各种化合物,线表示一系列酶反应。iPath中可以使用Compounds、Pathways、Orthologousgroups、Modules、Enzymes和Reactions等多种名称进行搜索,以查找感兴趣的部分通路及其关系。在转录组研究中,可以将分析得到的基于KEGG数据库注释的差异表达基因结果导入iPath,从而绘制特异性的差异通路图。在右侧的自定义栏中输入差异表达基因的数据,点击Submitdata即可。

用COG数据库下的COGNITOR程序进行

下载地址:

>

与其他生物类似,糖类是木霉中的主要能源物质,木霉的生长需要碳源,最适合的碳源为糖类(详见第4章)。木霉细胞外的碳源通过不同途径转化成葡萄糖,进入细胞内,然后葡萄糖分解代谢提供木霉生长所需的能量。如图51 所示,木霉可以通过葡糖淀粉酶、葡聚糖酶、纤维素酶等对环境中的淀粉、纤维素进行降解,产生葡萄糖,或者培养基中含有的葡萄糖可以通过葡萄糖转运进入细胞内,葡萄糖的转运有一活跃的转运系统进行,其他真菌,例如酿酒酵母(Saccharomyces cerevisiae)和链孢霉(Neurospora crassa)的糖转运系统已被充分研究(Boles et al,1997;Lagunas,1993;Marger et al,1993;Özcan et al,1999;Rand et al,1980a,1980b)。Delgado-Jarana等(2003)从哈茨木霉(Tharzianum)CECT 2413中分离了一个编码葡萄糖转运蛋白的基因gtt1,该基因编码含12个跨膜结构域和若干典型的糖转运域的葡萄糖转运蛋白。其表达受高葡萄糖抑制,受pH影响,说明木霉内葡萄糖转运受 pH 影响(Delgado-Jarana et al,2003)。里氏木霉(Treesei)的ΔTrhxt1突变体表现出葡萄糖积累的表型,鉴于此,Ramos等(2006)在里氏木霉(Treesei)中分离了一个预测编码葡萄糖转运蛋白的基因Trhxt1,并发现该基因的表达受高葡萄糖浓度的抑制,并受氧浓度的调控(Ramos et al,2006)。Trhxt1在不存在葡萄糖的情况下,其表达在微摩尔水平,当里氏木霉(Treesei)在含纤维素的培养基上生长时,纤维素的降解使葡萄糖浓度达到微摩尔水平时也诱导该基因的表达,并且该基因在缺氧情况下表达明显下调(Ramos et al,2006)。

图51 葡萄糖的合成和代谢

葡萄糖或者其他单糖的胞外氧化,在其他真菌中常有报道,但在木霉和粘帚霉中则还未见。里氏木霉(Treesei)和深绿木霉(Tatroviride)中没有葡萄糖氧化酶,但是黑曲霉(Aspergilus niger)的葡萄糖氧化酶能够在深绿木霉(Tatroviride)和里氏木霉(Treesei)中表达并具有活性(Mach et al,2004;母敬郁等,2006)。有报道发现,在木素木霉(Tlignorum)、绿色木霉(Tviride)和钩状木霉(Thamatum)中有抗坏血酸氧化酶(Hatsutori et al,1994;Nakanishi,1995)。

微生物可以利用不同的碳源,而且不同微生物对碳源的选择和利用效率存在很大差异。当优先选择的碳源存在时,其他碳源的代谢会被一种复杂而严谨的过程抑制,这就是所谓的碳代谢阻遏。为了研究木霉中碳代谢阻遏,利用兼并引物从里氏木霉(Treesei)和哈茨木霉(Tharzianum)中克隆获得了葡萄糖阻遏基因 cre1,cre1 编码包含锌指的C2H2型DNA结合蛋白,CRE1蛋白与构巢曲霉(Anidulans)中葡萄糖阻遏基因creA的编码产物相似度为46%。cre1 启动子中包含一些与先前验证的构巢曲霉(Anidulans)creA基因中结合位点一致的序列元件,creA/CRE1的结合位点是由紧密相连的两个5′-SYGGRG-3′基序组成,并且直接抑制作用仅发生在这种双结合位点(Cubero et al,1994;Strauss et al,1995;Ilmén et al,1996;Takashima et al,1996a,1996b);另外,在一小段保守的碱性区域内的色氨酸磷酸化也调节CRE1的DNA结合能力(Cziferszky et al,2002)。里氏木霉(Treesei)QM9414中cre1mRNA水平受碳源的影响,在含有葡萄糖的培养基上,cre1mRNA水平降低。这些结果表示cre1的表达可以自我调控。有趣的是,里氏木霉(Treesei)含有突变体Rut-C30,cre1基因被切断,突变体内cre1基因片段(cre1-1)仅编码含有一个锌指的95个氨基酸,其碳降解物阻遏因此得到解除,它的葡萄糖透过酶活性非常低下,可以超量生产纤维素分解酶,与QM9414不同,Rut-C30可以在含有葡萄糖的培养基上产生纤维素酶mRNAs,将cre1全长转入Rut-C30菌株可以造成cbh1表达的葡萄糖抑制,说明cre1调控纤维素酶的表达(Ilmén et al,1996)。

碳代谢阻遏抑制表达的基因模型系统已被用于大多数真菌中碳代谢阻遏的研究,而对消除碳代谢阻遏后的基因表达变化很少有人研究。creA/cre1敲除突变体表现出减慢生长、菌丝形态和产孢异常等表型(Shroff et al,1997;Nakari-Setälä et al,2009)。Portnoy等(2011)对里氏木霉(Treesei)的Δcre1突变体和野生型中基因表达差异进行了芯片分析,首次对真菌碳代谢阻遏的分子生理反应进行全面的研究(Portnoy et al,2011)。如图52所示,按照基因表达情况将其分为不同的集群,其中在Δcre1突变体中高表达的基因又因为受生长速率的影响表现为不同的集群:在Δcre1突变体中高表达并不受生长速率影响的C组包含16个基因,仅在具有高生长速率的Δcre1突变体中高表达的基因为E组50个,G组26个基因,Δcre1突变体中的高表达抵消高生长速率抑制表达的影响,26个H组基因在低生长速率的Δcre1突变体中上调表达。而在Δcre1突变体中抑制表达的基因可进一步分为高生长速率诱导表达(F组,36个基因)和低生长速率诱导表达两组(D组,36个基因)。

图52 表达集群间的基因分布

注:根据芯片数据,按CRE1的不同调控分为9个集群(CRE1诱导,CRE1抑制,CRE1非依赖)。颜色表示生长率的影响,黑色和深灰色集群表示基因仅受较高生长速率影响,其中深灰色(B、F、G)为表达上调,黑色(A、E)为表达下调,浅灰色(D、H)表示低生长速率上调表达的基因,阴影(C)表示表达不受生长速率影响的基因

(Portnoy et al,2011)

其中图52各集群中的基因包含细胞组分合成、细胞防御、细胞信号、细胞转运、蛋白活性调控、具有结合功能蛋白、蛋白命运、转录、能量、次生代谢、脂类代谢、碳代谢、氨基酸代谢、一般代谢、特异蛋白、假定蛋白等相关基因。

胞内的葡萄糖通过糖酵解(Glycolysis)和戊糖磷酸途径(Pentose Phosphate Pathway)进行分解代谢(图51,图53),以下主要从糖酵解和戊糖磷酸途径两方面对糖类分解代谢进行总结。

5121 糖酵解作用:将葡萄糖转变成丙酮酸

糖酵解作用是葡萄糖转变成丙酮酸的一系列反应,该途径中的关键酶为己糖激酶、磷酸果糖激酶、丙酮酸激酶(图53)。有人研究了里氏木霉(Treesei)中己糖激酶和葡糖激酶及它们在糖类分解代谢中的可能作用(Kubicek-Pranz et al,1991),发现在不同碳源基质上培养时,能够检测到分别对葡萄糖和果糖具有活性的酶,表明该菌至少能够产生一种己糖激酶和一种葡萄糖激酶。然而,Samuels等(1994)利用电泳技术检测了几种木霉和肉座菌的同工酶,只发现了一个己糖激酶。这种分歧还需要进一步澄清,但两种酶在碳降解物阻遏被解除的里氏木霉(Treesei)突变株Rut-C30 及F4 或F5 中活性没有改变(Labudova et al,1983),在两个2-脱氧葡萄糖抗性突变株中也没有改变,表明己糖激酶或者葡萄糖激酶在木霉的葡萄糖调控中没有作用,后来利用构巢曲霉(Anidulans)进行的研究也得出了类似结论(Ruyter et al,1996)。

图53 碳代谢的主要途径:糖酵解途径和磷酸戊糖途径

对其他糖酵解酶类在基因水平上进行了研究,由于这些酶类理论上的表达很强,对表达工具的构建具有潜在的应用价值。甘油醛-3-磷酸脱氢酶已经从康宁木霉(Tkoningii)中分离纯化,其编码基因也已克隆得到(Sakai et al,1990)。该酶有两种同工酶,它们的区别在于对康宁酸(Koningic Acid)的敏感性不同,康宁酸是由康宁木霉(Tkoningii)产生的一种抗生性代谢产物。研究认为氨基酸残基的差别是造成两种酶对康宁酸敏感性不同的原因,其中一种酶的氨基酸残基在174和181为丙氨酸和丝氨酸,而另一种酶在174和181位分别为苏氨酸和苏氨酸(Watanabe et al,1993)。甘油醛-3-磷酸脱氢酶编码基因也已经从哈茨木霉(Tharzianum)中克隆得到,而且在光诱导的产孢过程中,甘油醛-3-磷酸脱氢酶基因(gpd)mRNA 水平下调,在分生孢子梗和分生孢子中含量最低(Puyesky et al,1997)。Vanhanen等(1989)和Goldman等(1992)分别从里氏木霉(Treesei)和绿色木霉(Tviride)中克隆到了编码3-磷酸甘油酸激酶的基因,其5′-端序列含有保守的结合位点,该位点可结合环腺苷控制因子、一种催化蛋白质和碳分解物阻遏抑制因子cre1(Vanhanen et al,1989;Goldman et al,1992b)。里氏木霉(Treesei)的3-磷酸甘油酸激酶基因pgk1还包含一个热激共有序列,对热胁迫没有反应(Vanhanen et al,1991)。丙酮酸激酶的编码基因也已经从里氏木霉(Treesei)中克隆到,其蛋白质结构与黑曲霉(Aniger)和构巢曲霉(Anidulans)的丙酮酸激酶高度相似(Schindler et al,1993)。在里氏木霉(Treesei)中,同工酶电泳结果发现了2~3个丙酮酸激酶条带,但点杂交却只发现了一个基因(Schindler et al,1993)。有证据表明,丙酮酸激酶存在磷酸化现象,这可能就是发现两个电泳迁移条带的原因。

木霉也能够在非糖类碳源中生长,Jackson(1973)研究了绿色木霉(Tviride)对丙烯基乙醇的降解代谢途径,发现进一步的产物为丙烯酸和乙酸,后者进一步代谢为丙酮酸酯,可累积到原始底物量的50%(w/w)(Jackson,1973)。Tye等(1977)通过在甲醇培养基上连续培养,研究了木素木霉(Tlignorum)生长情况,发现最适生长速率较低(μ=0026),而且只在低浓度甲醇条件下(016%)才能生长。

5122 磷酸戊糖途径

另一种常见的糖类分解代谢是磷酸戊糖途径(图53)。葡萄糖-6-磷酸(Glucose-6-phosphate)被转化成果糖-6-磷酸(Fructose-6-phosphate)和甘油醛-3-磷酸(Glyceraldehydes-3-phosphate),反馈进糖酵解途径内。糖酵解途径的主要产物为丙酮酸,戊糖磷酸循环则可以为核酸和核苷酸合成提供戊糖,还可以为辅酶、能量载体等提供NADPH,也可以提供赤藓糖磷酸(Erythrose Phosphate)借莽草酸途径(Shikimic Acid Pathway)合成芬芳族氨基酸(Aromatic Amino Acids)。该路径的关键酶是葡萄糖-6-磷酸脱氢酶(Glucose-6-phosphate dehydrogenase,G6PDH)。

已知真菌对葡萄糖-6-磷酸的分解代谢涉及糖酵解和戊糖磷酸途径,两者所起作用的比例依细胞需要而异。对于戊糖磷酸途径来说,在长枝组的木霉种类中发现了至少2种葡萄糖-6-磷酸脱氢酶和6-磷酸葡萄糖酸脱氢酶的同工酶(Samuels et al,1994),但Stasz等(1988a)在绿色木霉(Tviride)、哈茨木霉(Tharzianum)、绿木霉(Tvirens)、康宁木霉(Tkoningii)、钩状木霉(Thamatum)和多孢木霉(Tpolysporum)的菌株中仅检测到单一酶。Stasz等(1988a)检测的是不同菌株的同工酶,因此在方法上是能够发现同工酶差异的,因此他们与Samuels等(1994)结果的差别,很可能是由所使用的菌株不同造成的。Neto(1993)分离纯化并研究了糖酵解途径的磷酸果糖激酶2,该酶在调控方面具有重要意义,发现它不为环腺苷依赖型的磷酸化所调解控制,只为底物的可利用性所调控,这种现象与酵母不同,但与早期关于黑曲霉(Aniger)的报道一致(Harmsen et al,1992)。

磷酸戊糖途径是NADPH的主要来源,NADPH是许多生物分子尤其是脂类合成所必需的(Berg et al,2002)。它也为合成氨基酸提供中间产物:组氨酸由核糖-5-磷酸合成,赤藓糖-4-磷酸是合成芳香族氨基酸(苯丙氨酸、酪氨酸和色氨酸)的前提(Berg et al,2002)。因此,磷酸戊糖途径在蛋白质的合成中起重要作用,被认为与蛋白质高效生产的生物系统相关。磷酸戊糖途径中间产物核糖-5-磷酸也是核酸和核苷酸合成所必需的。磷酸葡萄糖异构酶(PGI)催化糖酵解途径的第二步,使葡萄糖-6-磷酸转变成果糖-6-磷酸。这一酶位于糖酵解和磷酸戊糖途径的第一个结合点,PGI的失活导致代谢流转向磷酸戊糖途径,使产生更多的NADPH。在大肠杆菌(Escherichia coli)中发现PGI的突变株pgi能够产生更多的核苷酸和氨基酸前体(Canonaco et al,2001)。里氏木霉(Treesei)中pgi基因被克隆,并且通过里氏木霉数据库分析发现没有与其同源的ORFs(Limón et al,2011)。

5123 葡萄糖代谢命运

糖酵解途径最终将葡萄糖降解成丙酮酸,丙酮酸可以通过有氧呼吸最终产生 CO2,H2O和ATP,也可以通过厌氧途径生成乳酸(图51)。研究表明,关键基因的调控变化,控制里氏木霉(Treesei)中糖酵解途径产物丙酮酸进入有氧或是厌氧途径(Chambergo et al,2002)。Chambergo等(2002)建立了丝状真菌里氏木霉(Treesei)的EST数据库。Derisi等(1997)利用的互补DNA芯片技术分析了葡萄糖耗尽时的基因表达谱,并与酿酒酵母(Scerevisiae)发酵过程中基因时空表达模式进行了比较(图54)。里氏木霉(Treesei)被选为这项研究的材料,因为它的自然栖息地和对营养的要求与酿酒酵母(Scerevisiae)明显不同。酿酒酵母(Scerevisiae)一般需要一个高糖浓度的生长环境,而里氏木霉(Treesei)可以在营养缺乏的环境中生长,并利用胞内水解酶,例如纤维素酶对周围环境中多糖进行水解获得葡萄糖(Beguin,1990)(图 51)。对里氏木霉(Treesei)在葡萄糖耗尽时基因表达模式的分析发现,糖酵解途径最终产物丙酮酸进入有氧而非厌氧途径。而且,在里氏木霉(Treesei)表达谱中发现了编码三羧酸循环中酶和电子传递链中蛋白质的基因的表达,表明丙酮酸的氧化是通过三羧酸循环进行的,而不是通过发酵产生乙醇,而且乙醛被氧化生成醋酸,而不是还原产生乙醇,从而防止NADH的再生(Chambergo et al,2002)。

氧气是决定丙酮酸进入有氧途径还是厌氧途径的关键因子,同时,氧气还影响丙酮酸生成的糖酵解途径中关键酶基因的表达。Bonaccorsi等(2006)证明,短暂的缺氧可以抑制糖酵解途径中关键酶基因的表达,并比较了不存在氧时里氏木霉(Treesei)和酿酒酵母(Scerevisiae)中糖酵解途径中基因的表达变化(Bonaccorsi et al,2006)。

5124 葡糖异生途径

真菌虽然通过糖酵解途径,可以利用多样的碳源,但如果真菌生长在醋酸培养基上,真菌就要通过糖异生途径合成各种碳水化合物(图51)。所谓糖异生,是指非糖的前体物质(例如,乳酸、氨基酸、甘油等)合成葡萄糖的过程。糖异生途径不是糖酵解途径的简单逆转,因为糖酵解作用的激酶(己糖激酶、磷酸果糖激酶和丙酮酸激酶)是不可逆的。糖异生途径为:丙酮酸羧化转变成草酰乙酸,然后磷酸烯醇丙酮酸羧化激酶将之脱羧和磷酸化生成磷酸烯醇丙酮酸,在经糖酵解途径中的可逆反应转变成果糖-1,6-焦磷酸,提供给寡糖和多糖的合成(图51)。

图54 当葡萄糖消耗完时,里氏木霉(Treesei)和酿酒酵母(Scerevisiae)中编码参与在关键代谢过程中酶的基因表达谱的比较

注:↑和↓的框架分别表示葡萄糖耗尽时表达量升高和降低的基因,→表示表达不受影响的基因,表示尚未从木霉中分离获得的基因,ADH基因在木霉中没有获得,但是在木霉培养物种乙醇脱氢酶的活性被检测到(Beutler,1984)。其中,FBA:果糖-1,6-二磷酸醛缩酶;TPI:磷酸甘油醛异构酶;TDH:3-磷酸甘油醛脱氢酶;PGK:磷酸甘油酸激酶;GPM:磷酸甘油酸变位酶;ENO:烯醇化酶;PYK:丙酮酸激酶;PDA:丙酮酸脱氢酶;PCK:磷酸烯醇式丙酮酸羧化激酶;PDC:丙酮酸脱酸酶;ALD:乙醛脱氢酶;ADH:乙醇脱氢酶;ACS:乙酰辅酶A合成酶;CIT:柠檬酸合成酶;ACO:顺乌头酸酶;IDH:异柠檬酸脱氢酶;KDH:a-酮戊二酸脱氢酶;YGR:琥珀酸硫激酶;SDH:琥珀酸脱氢酶;FUM:延胡索酸酶;MDH:苹果酸脱氢酶

(Chambergo et al,2002)

以上就是关于ipath代谢通路富集原理全部的内容,包括:ipath代谢通路富集原理、生物信息学进 有基因组蛋白序列,如何将每个序列匹配到COG数据库,如一条序列对应J,及翻译,在线等多谢、木霉中糖类代谢等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9378228.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存