我的做法是将没有执行或执行失败的任务记录下来。
在quartz的数据库中 表QRTZ_TRIGGERS
中记录了任务的执行时间,然后写一个定时任务,去执行没有完成的任务应该是抛弃吧 等待下一个时间点执行
恢复
Quartz的故障恢复

iteye_19215
关注
0点赞·914人阅读
在默认的情况下,Quartz中所提交的任务都是独立的运行在内存中的线程,这意味着一旦机器出现故障或任何原因这个线程被干掉,那么提交的任务就无法继续也无法恢复。如果我们想要在系统出现故障的情况下恢复Quartz中的任务,就要把当前任务状态持久化,然后在系统恢复之后恢复任务的执行,这就是基本的解决思路。Quartz在这方面也提供了支持。
首先,持久化的问题。要进行恢复就要将任务进行的状态保存下来,Quartz内置了数据库持久化的模块,我们要做的只是在配置文件中增加数据源,并在数据库中手动建好表就可以了。在%Quartz_HOME%/docs/dbTables目录下有大部分数据的建表语句,可以直接拿到数据库中进行建表 *** 作。
以下就对两种定时任务框架进行简单说明。
github地址:>
主要有三个核心概念:调度器、任务和触发器。
三者关系简单来说就是,调度器负责调度各个任务,到了某个时刻或者过了一定时间,触发器触动了,特定任务便启动执行。概念相对应的类和接口有:
1)JobDetail:望文生义就是描述任务的相关情况;
2)Trigger:描述出发Job执行的时间触发规则。有SimpleTrigger和CronTrigger两个子类代表两种方式,一种是每隔多少分钟小时执行,则用SimpleTrigger;另一种是日历相关的重复时间间隔,如每天凌晨,每周星期一运行的话,通过Cron表达式便可定义出复杂的调度方案。
3)Scheduler:代表一个Quartz的独立运行容器,Trigger和JobDetail要注册到Scheduler中才会生效,也就是让调度器知道有哪些触发器和任务,才能进行按规则进行调度任务。
首先,这种框架现在市面上是有的。强烈建议,不要重复造轮子。
先介绍几种比较主流的。
Elastic-Job,是当当网开源的分布式调度解决方案,支持任务分片功能,可以充分利用资源。Elastic-Job有两个独立的子项目Elastic-Job-Lite和Elastic-Job-Cloud组成。具体实现可以参考官方教程。其整体架构图如下。
Elastic-Job的特点:
1、分布式调度 2、作业高可用 3、任务分片执行。
另外,还有其他的一些框架,可以对比使用。比如TBSchedule是阿里巴巴开源的分布式调度框架,完全由java实现,目前被应用于淘宝,阿里巴巴,支付宝,京东, 汽车 之家等。大众点评开源的xxl-job,也是应用比较广泛的分布式调度任务。
目前我使用过的有 Elastic-Job和xxl-job。两者功能都很强大,后台管理也比较完善。很容易上手。都可以满足日常的工作需要。区别就是 Elastic-Job依赖zk,但是xxl-job不依赖zk,只依赖数据库。
目前市面上应该还有一些其他的框架,但是以上是比较主流的,可以根据自己的需要来选择。切记不要重复造轮子,造轮子需要大量的时间去验证。会让你在坑里爬不出来。
1XXL-JOB
2Elastic-Job
Elastic-Job 是一个分布式调度解决方案,由两个相互独立的子项目 Elastic-Job-Lite 和 Elastic-Job-Cloud 组成。
定位为轻量级无中心化解决方案,使用 jar 包的形式提供分布式任务的协调服务。
支持分布式调度协调、d性扩容缩容、失效转移、错过执行作业重触发、并行调度、自诊断和修复等等功能特性。
分布式调度解决方案,由两个相互独立的子项目Elastic-Job-Lite和Elastic-Job-Cloud组成。
Elastic-Job-Lite定位为轻量级无中心化解决方案,使用jar包的形式提供分布式任务的协调服务。选择该项目可以满足大多数it企业的需求。
Elastic-Job-Cloud使用Mesos + Docker的解决方案,额外提供资源治理、应用分发以及进程隔离等服务。
轻量级无中心化:Elastic-Job-Lite并无作业调度中心节点,而是基于部署作业框架的程序在到达相应时间点时各自触发调度。
灵活的增删改查作业,集中式管理调度作业
支持高可用:一旦执行作业的服务器崩溃,等待执行的服务器将会在下次作业启动时替补执行。开启失效转移功能效果更好,可以保证在本次作业执行时崩溃,备机立即启动替补执行。
支持分片:作业分片一致性,保证同一分片在分布式环境中仅一个执行实例
任务监控:通过监听Elastic-Job-Lite的zookeeper注册中心的几个关键节点即可完成作业运行状态监控功能
一致性:使用zookeeper作为注册中心,为了保证作业的在分布式场景下的一致性,一旦作业与注册中心无法通信,运行中的作业会立刻停止执行,但作业的进程不会退出,这样做的目的是为了防止作业重分片时,将与注册中心失去联系的节点执行的分片分配给另外节点,导致同一分片在两个节点中同时执行。
同时支持动态扩容,将任务拆分为n个任务项后,各个服务器分别执行各自分配到的任务项。一旦有新的服务器加入集群,或现有服务器下线,elastic-job将在保留本次任务执行不变的情况下,下次任务开始前触发任务重分片
3opencron
opencron是一个功能完善且通用的开源定时任务调度系统,拥有先进可靠的自动化任务管理调度功能,提供可 *** 作的 web 图形化管理满足多种场景下各种复杂的定时任务调度,同时集成了 linux 实时监控、webssh 等功能特性
4quartz
支持集群和分布式,但是没有友好的管理界面,功能单一,对于管理调用的任务比较困难。
quartz使用数据库锁。在quartz的集群解决方案里有张表scheduler_locks,quartz采用了悲观锁的方式对triggers表进行行加锁,以保证任务同步的正确性。一旦某一个节点上面的线程获取了该锁,那么这个Job就会在这台机器上被执行,同时这个锁就会被这台机器占用。同时另外一台机器也会想要触发这个任务,但是锁已经被占用了,就只能等待,直到这个锁被释放。
quartz的分布式调度策略是以数据库为边界资源的一种异步策略。各个调度器都遵守一个基于数据库锁的 *** 作规则从而保证了 *** 作的唯一性。同时多个节点的异步运行保证了服务的可靠。但这种策略有自己的局限性:集群特性对于高CPU使用率的任务效果很好,但是对于大量的短任务,各个节点都会抢占数据库锁,这样就出现大量的线程等待资源。这种情况随着节点的增加会越来越严重。
缺点:quartz的分布式只是解决了高可用的问题,并没有解决任务分片的问题,还是会有单机处理的极限。
5Saturn
Saturn
基于当当Elastic Job代码基础上自主研发的任务调度系统,是唯品会开源的分布式作业调度平台,取代传统的Linux Cron/Spring Batch Job的方式,做到统一配置,统一监控,任务高可用以及分片并发处理。主要是去中心化,高可用,可分片,动态扩容,有认证和授权功能。
主要特性
支持多种语言作业,语言无关(Java/Go/C++/PHP/Python/Ruby/shell)
支持秒级调度
支持作业分片并行执行
支持依赖作业串行执行
支持作业高可用和智能负载均衡
支持异常检测和自动失败转移
支持异地容灾
支持多个集群部署
支持跨机房区域部署
支持d性动态扩容
支持优先级和权重设置
支持docker容器,容器化友好
支持cron时间表达式
支持多个时间段暂停执行控制
支持超时告警和超时强杀控制
支持灰度发布
支持异常、超时和无法高可用作业监控告警和简易的故障排除
支持失败率最高、最活跃和负荷最重的各域各节点TOP10的作业统计
优点:源码清晰,学习入手容易。应用部署简单,提供运维控制台,集中管理作业,运维控制台功能强大,提供作业统计报表 ,告警,增删改查作业,作业统一配置。
最后一个是国内团队封装的
前端时间研究了两款分布式任务调度框架,一个是XXL-Job,现在非常主流,很多常见的一些公司都在使用,像滴滴美团这样的公司都在用,这也是一款开源产品,下载下来导入IDEA就可以使用,分调度器和执行器和管理UI,有很美观的UI界面,可以对任务做增删改查,以及支持自定义开发,有很详细的帮助文档,还提供有demo,傻瓜式的,很简单,亮点是提供了管理界面。
另一个是Quartz,这个组件单机和集群都支持,单机的话是RAMJobStore任务存储,而要支持集群的话,就要将配置改成数据库方式,Quartz提供的有十几张表,其分布式的原理是利用了数据库的行锁,Quartz很简单,也是一款轻量级的开源产品,我们公司一直用这款组件,很成熟无Bug,推荐使用!
springcloudtask,springclouddataflow,正在学习中
quartz可以不适用数据库吗
QUARTZ任务不写入数据库
在使用quartz遇到了很诡异的bug,通过google及百度都没有找到解决方案,最后通过搭建quartz源码环境,发现问题所在。
最近接手一个系统的升级开发,系统中使用了quartz任务调度,在大部分的需求开发完毕后,对之前开发的部分功能模块进行测试及优化,当优化任务调度并进行测试,问题出现了,每当我添加定时任务时,任务添加成功且在到达定时时间后,任务会被执行,但是任务切没有写入数据库!!!
以上就是关于quartz 怎么停止一个任务全部的内容,包括:quartz 怎么停止一个任务、quartz定时任务执行时系统故障错过了时间点后续会自动修复吗、定时任务框架选型Quartz/Xxl等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)