电脑桌面上的快捷图标打不开,双击之后说是无法从当前配置的位置打开图像数据库

电脑桌面上的快捷图标打不开,双击之后说是无法从当前配置的位置打开图像数据库,第1张

这可能是图标缓存出了问题,因为图标的数据是以链接的形式存放在缓存区域中的,如果链表中每个元素的开始与结束位置发生了变化,那么就会出现这种情况。

下药:碰上这个故障可以通过手动重置图标缓存来解决。首先右击桌面空白处选择“属性”,切换到“外观”选项卡,点高级,在“项目”框的下拉列表中选择“图标”,改变一下图标的大小,然后再变回原设置即可。这样系统就会自动清空并重建缓存中的数据。

你试试,可能是

主要内容有:图像增强、图像编码、图像复原、图像分割、图像分类、图像重建、图像信息的输出和显示。

图像增强用于改善图像视觉质量;图像复原是尽可能地恢复图像本来面目;图像编码是在保证图像质量的前提下压缩数据,使图像便于存储和传输;图像分割就是把图像按其灰度或集合特性分割成区域的过程。

图像分类是在将图像经过某些预处理(压缩、增强和复原)后,再将图像中有用物体的特征进行分割,特征提取,进而进行分类;图像重建是指从数据到图像的。处理,即输入的是某种数据,而经过处理后得到的结果是图像。

扩展资料

发展概况

数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。

早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。首次获得实际成功应用的是美国喷气推进实验室(JPL)。

他们对航天探测器徘徊者7号在1964年发回的几千张月球照片使用了图像处理技术,如几何校正、灰度变换、去除噪声等方法进行处理,并考虑了太阳位置和月球环境的影响,由计算机成功地绘制出月球表面地图,获得了巨大的成功。

随后又对探测飞船发回的近十万张照片进行更为复杂的图像处理,以致获得了月球的地形图、彩色图及全景镶嵌图,获得了非凡的成果,为人类登月创举奠定了坚实的基础,也推动了数字图像处理这门学科的诞生。

在以后的宇航空间技术,如对火星、土星等星球的探测研究中,数字图像处理技术都发挥了巨大的作用。数字图像处理取得的另一个巨大成就是在医学上获得的成果。

参考资料来源:百度百科-数字图像处理

朱有法 谢德体 骆云中

(西南大学资源环境学院,重庆,400716)

摘要:为及时、准确地掌握土地资源利用状况,使土地利用动态监测可视化,基于Windows网络环境的B/S体系结构,整合IIS (Internet Information Server)和IWS (Image Web Server),建立影像发布系统。系统采用影像网络服务器、ECWP插件等技术,成功地解决了基于浏览器的遥感影像放大、缩小、漫游,以及图幅范围、目标位置信息显示等问题,实现了海量遥感影像数据的有效管理和快速传输。

关键词:Image Web Server;土地利用;影像发布

土地利用动态管理是要求土地部门能够及时、准确地掌握土地利用的状况,为政府决策、各级土地管理部门制定管理政策和落实各项管理措施提供科学依据[1]。土地利用动态变化影像数据具有实时、可视化等特点。传统WebGIS应用,由于系统模块之间一般为紧耦合、造成系统可移植性较差,互 *** 作能力有限,已经不能满足企业级的应用需求[2]。建立网络土地利用动态变化的影像信息发布系统,对土地资源信息进行网络化管理,使用户在客户端实现土地数据的 *** 作,如漫游、查询、分析等 *** 作,从而使整个土地部门对土地资源信息进行分布式管理,使系统资源达到共享、开放,实现土地利用的动态、实时、可视化管理。

1 系统目标

系统采用影像网络服务器IWS (Image Web Server)实现遥感影像的管理和发布。这是通过Internet/Intranet发送影像数据的专业高性能应用系统,它提供ECWP高性能影像数据流处理(High Performance Streaming Imagery)协议。这个协议为用户远程浏览海量影像提供了一条新的高效率的途径,它允许用户最快的访问任何大小的影像文件,甚至TB级影像[3]。它不同于使用服务器端图像子集选取和解压方式的其他影像数据分布式服务技术,而是直接将压缩的图像传输到客户端的浏览器,由客户端浏览器在本地解压和可视化。

传统的图像媒体格式有 BMP、TIFF、GIF、JPEG 等,这些格式的图像要么体积大,要么有失真,而且在网上传输占有较大带宽[4]。由于土地资源利用变化影像信息传输量大,在保证图像质量的前提下,尽量减少所占用的网络资源,提高数据传输速度。目前采用小波变换和位平面熵编码器生成的ECW和JPEG2000 格式的图像文件具有良好的压缩性能。

11 更高的压缩率和压缩方式

在离散小波变换算法中,图像可以转换为一系列更加有效存储像素模块的“子波”,在相同图像质量下比JPEG有更高的压缩比,而且压缩后的图像显得更细腻平滑,特别适合在互联网和遥感图像传输领域应用;压缩一次,有多种解压方式,可以不需要解压整个文件而抽取各种分辨率、质量、分量或空间区域的图像。

12 实现渐进传输

不像传统的 JPEG 那样由上到下、从左到右一块一块地慢慢传输、显示,而 IWS (Image Web Server)是首先传输图像的轮廓,然后逐步传输图像质量高的数据,接收端就可以根据不同像素精度(位深度)和图像空间分辨率来重构图像,让图像由朦胧到清晰显示。

13 码流的随机访问和处理

允许用户在图像中随机地定义感兴趣区域,使得这一区域的图像质量高于其他图像区域;码流的随机处理允许用户进行旋转、移动、滤波和特征提取等 *** 作。

14 支持多源影像数据和海量数据快速压缩

系统实现对多种数据的管理,包括卫星遥感影像、航空遥感影像等的栅格数据,土地利用现状图、土地利用详查图、地籍图等矢量数据,各种统计表格、文本说明以及声音、等属性数据。高分辨率的遥感影像的获取,可以迅速得到几周前甚至几天前的最新更新数据,使用户可以及时更新数据库中的数据。通过数据的融合和挖掘,得到用户感兴趣的支持地理投影的土地信息,数据量可达GB、TB级。

2 系统设计

21 系统的体系结构

系统关键技术是以IWS为基础,快速将多源数据复合、通过网络集成多种技术成果和数据,进行准确、连续、动态的管理土地资源利用状况,使之具有较高的信息服务水平和信息共享能力。

对于海量卫星遥感影像数据,为了能在浏览器端直接、顺畅、平滑地显示目标影像及其地理信息,考虑现实网络带宽的限制,系统采用ECW、JPEG2000图像压缩技术,基于影像网络服务器IWS (Image Web Server),应用ActiveX插件技术原理,通过在客户端浏览器上安装ECWP插件,以High-performance streaming imagery协议建立起与影像网络服务器IWS (Image Web Server)的联系,然后把取得的数据信息在本地客户端进行解压缩还原处理,实现影像的发布。这种结构既减缓了服务器的运行负担,又提高了数据传输的效率,系统总体结构如图1所示。

系统采用 Browser/Server 结构,其优势在于系统简单、功能强大、扩展能力良好等[5]。B/S模式通过Internet进行通信,可以不受地域的限制。B/S开发模式实际上是分布式的C/S结构在Inernet/Intranet上的扩展,即把一个应用对象从功能结构上划分为三部分:数据处理逻辑、业务处理逻辑和显示逻辑。其中Web服务器是显示逻辑的核心,它将信息组织成超文本,通过超文本标记语言(HTML)和超文本传输协议(>

将土地利用动态变化影像信息系统纳入B/S结构的框架后,首先要解决的问题是通过网页访问后台数据库信息。Browser端的应用程序都被分割为页面的形式,用户的交互 *** 作是以提交表单等方式来实现的。ASP (Active Serve Page)是一个Web服务器端的开发环境,属于ActiveX技术中的Server端技术,在服务器端解释执行,执行结果产生动态生成的Web页面并送到浏览器。ASP脚本集成于HTML中,容易生成,无需编译或链接即可直接执行。在ASP脚本中可以方便地引用系统组件和ASP的内置组件,还能通过定制ActiveX服务器组件来扩充功能。利用它可以产生和运行动态的、交互的、高性能的Web服务应用程序。

图1 系统结构设计

22 数据库的建立

系统设计采用技术成熟的 TCP/IP 网络通信标准,通过 Hyper Text Transfer Protocol (超文本传输协议)建立客户端与服务器通信。由于土地利用动态变化影像是大量目标资料文件不断入库更新的过程,采用SQL server 2000作为实现动态页面的数据支持数据库,这样就可以生成丰富的、实时的、动态的网页显示到客户端浏览器上。

对于传统的文件格式,利用动态服务网页(ASP)技术,再考虑到响应速度与系统状况的平衡,采用以文件存储与关系数据库存储相结合的数据存储方法,利用 ActiveX DataObject (ADO)数据访问组件,建立ASP页面脚本应用程序与关系数据库的联系,实现输入/输出的快速响应,保证系统的稳定运行。

23 系统集成

遥感图像与矢量数据是组成地理信息系统的两大主要数据源,将两者结合起来统一于WebGIS中是WebGIS发展的必然[6]。在解决主要相关技术的基础上,以集成数据库为核心,对土地资源管理信息系统进行了IIS和IWS无缝连接,研制分类浏览,建立书签、资料评价、用户管理、资料管理、资料上传、资料搜索、发布通知等模块。运用公钥加密算法,结合网络 *** 作系统及SQL Server 2000数据库的安全特性,对影像系统用户进行权限等级管理,确保系统的安全性,完成总体集成。

24 系统特点

241 影像传输速度快、占用网络资源少

系统首次采用影像网络服务器(IWS)技术,基于远程窄带网络实现了海量遥感影像信息的快速传输和实时漫游、缩放及坐标显示;实现IIS与IWS无缝结合,支持的文件类型和信息量不受限制,可以无限扩展;仅仅在服务器端启用IIS服务和IWS服务即可,充分利用客户端系统资源,发挥分布式计算的优势,服务器端系统占用资源少,一般应用无需设置专门的高档服务器;客户端实现零安装、免维护,所有 *** 作都实现网络化,不受地域限制,易于实现相关信息共享,提高目标信息的利用效率;基于开放、成熟技术,系统安全、稳定、可靠,易于维护,易于扩展,适应性强,易于推广。

242 对海量影像数据实现自动化增量动态归类管理与发布

系统采用自动化增量动态归类管理技术,解决了不断扩展的影像信息的类别、层次逻辑关系管理问题,实现了类别的动态自动维护和目标影像的树形结构查询与发布。系统的数据库采用内容动态自动分级的方法,以树状的形式逻辑显示给用户,满足影像信息文件不断增加的需求,并能自动无限扩充。用户还可按照类别进行查找,逐级浏览。

3 系统功能实现

根据系统的目的和要求,整个土地利用动态变化影像信息系统包括数据采集、数据编辑、数据库管理、数据处理、数据输出5个部分,完成土地影像数据的管理、影像数据的处理、土地利用动态变化影像系统的维护以网上发布。系统功能如图2。

图2 系统功能模块结构图

ECW、JPEG2000格式的影像数据是不能直接在浏览器上显示与 *** 控的,从影像服务器上传过来的这类数据必须通过对它进行解压缩、解编码、解量化、小波反变化等一系列处理。为实现ECW、JPEG2000格式图像文件跟浏览器的无缝结合,系统采用ActiveX插件技术,使用一个ECWP插件嵌入到WEB页面中,当用户需要访问ECW、JPEG2000格式图像文件时,浏览器就会下载该插件并自动安装到本地计算机上,此插件支持ECWP协议,以此实现客户端与服务器端影像数据的渐进式传输,对客户端影像的浏览和 *** 纵是利用JavaScript脚本语言实现的。在本系统中,主要实现了对影像的放大、缩小、漫游 *** 作,以及经纬度值、图幅范围等地理信息显示等。

31 土地利用变化影像数据的管理

土地影像数据的管理包括土地数据的采集、编辑等工作[7]。数据采集包括各种纸质土地资源图件,如土地利用现状图、土地利用规划图等图件的数字化输入,遥感影像的解译结果的输入、野外实测数据的GPS输入以及各种属性数据的键盘输入等。在土地数据输入的过程中,要检查数据的准确性和精确度,确保进入数据库的数据的精度,同时注意空间数据和属性数据的逻辑关系和拓扑一致性。通过对数据的编辑进行数据的添加、删除、修改等工作,保证发布到网上Internet的土地资源数据是正确的。

32 土地利用变化影像数据的处理

土地资源数据的处理除了一般的放大、缩小、漫游、查询以外,还可根据用户端的请求来完成特定的任务,其中包括图像格式的转换、图面相关信息的增强、图像比例尺的拟和、图像的分层叠加、图像的分层处理、图元面积的量算、图元数量的统计、土地属性和空间属性的更新等。图3为实现JPEG2000格式压缩和解压的结构框图:首先对源图像数据进行离散小波变换,然后对变换后的小波系数进行量化,接着对量化后的数据熵编码,最后形成输出码流。解码器是编码的逆过程,首先对码流进行熵解码,然后解量化和小波反变换,最后重建图像数据。

图3 JPEG2000/ECW 编码器和解码器结构框图

33 土地利用变化影像数据的维护

土地数据维护包括土地数据代码与字典维护,确保数据库正常运行,随时添加、删除、修改、更新数据库。用户管理包括:可以添加、删除、修改系统的用户,设置用户的权限,合理和安全地控制数据访问权限。数据库维护,包括数据的初始化、数据库的备份、数据库的恢复等功能。

空间数据表达趋向多比例尺、多尺度、动态多维和实时三维可视化[8]。Image Web Server作为土地资源管理信息系统的一种特殊应用领域,为土地资源信息的共享提供了开放的信息空间,为各级土地管理部门、政府机构以及全球用户提供了丰富的土地信息。Internet用户不需要购买软件,就可以通过>

参考文献

[1]黄福奎论遥感技术在土地利用动态监测中的应用[J]中国土地科学,1998,12 (3):21~25

[2]陈静,龚健雅,朱欣焰等基于J2EE的分布式WebGIS [J]测绘通报,2004 (2):27~30

[3]李青元,张福浩,朱雪华等Web GIS实现技术探讨中国图形图像学报,1998,3 (6):485~489

[4]阎君地理信息共享与开放式地理信息系统技术研究中国图形图像学报,1998,3 (2):140~145

[5]郑人杰软件工程北京:清华大学出版社[M],1995

[6]杨超伟,李琦,承继成等遥感影像的Web发布研究与实现[J]遥感学报,2000,4 (1):71~75

[7]成四海,吴相林Web数据库的设计与实现[J]华中理工大学学报,1999,27 (2):110~112

[8]李德仁浅论21世纪遥感与GIS的发展[J]东北测绘,2002,25 (4):3~5

管相荣

(河南省国土资源厅信息中心 郑州 450016)

摘 要:为了满足大区域控制点综合管理时针对多领域的需求,实现数据的共享所面临的坐标系统、属性结构、投影带、行政辖区、影像重叠区等问题,采用省域控制点图形图像数据库建立的案例分析,省域控制点图形图像数据库存储了控制点的属性、空间位置、图形图像等多项信息,叠合了行政辖区、原始影像、接合图表、投影带等信息,为第二次全国土地调查工作的开展提供了宝贵的资料和经验。

关键词:省域 控制点 GPS 控制点图形图像数据库

0 引 言

为确保“2010 年全国耕地面积不少于 18 亿亩(12 亿 hm2)的红线”,国家已经启动第二次全国土地调查,利用先进的技术和方法,力求建立“四级联动、上下互通”、“高保真”的土地利用数据库,实现土地管理的信息化、网络化。河南省作为全国人口和农业大省,土地总面积约167 万 km2,2007 年人均耕地面积 8134 m2,低于全国平均水平,在国家严控耕地面积的严峻形势下,如何摸清土地家底、有效集约管理土地资源尤为重要。近年来,河南省运用先进的“3S”技术和通信技术,已经开展了多项土地资源监测、地籍调查方面的研究。全国高分辨率影像数据处理及数据库建设项目(以下简称“遥感项目”)是第二次全国土地调查的先导,旨在为其提供宝贵的经验。河南省作为项目试点之一,2005 年以 GPS 实测点为控制数据,影像数据均采用SPOT 5 遥感影像,对平顶山、许昌、漯河、安阳四个地市的遥感影像进行处理,精度满足要求。2007 年项目在全省铺开,布设控制点数达上千个,按照《SPOT 5_25 m 数字正射影像图制作技术规定》及《第二次全国土地调查底图生产技术规定》的要求,对影像处理必须精确,影像纠正控制点是土地信息提取的关键所在,如何综合管理这些控制点数据十分必要;同时,就我国 GPS控制网而言,GPS A B C 级点布设达上万个,而以此为基准的下一级 GPS 控制点将更多,对其进行分板机统筹管理也势在必行。

影像纠正控制点的获取途径有两种:一种是 GPS 实测,另一种是从大于等于调查底图比例尺的已有图件上采集。遥感项目河南试点控制数据均为 GPS 实测点,省域控制点管理包括 GPS 实测点和图形图像控制点,涉及跨省域、投影带、属性结构设定、编号、叠加分析、条件查询、图形查询、精度评定、点位分布联测略图等问题,有必要根据实际的工作底图情况,建立控制点图形图像数据库,实现控制点位置信息、属性信息、图形图像信息的统一管理,力图为同类研究提供参考。

1 控制点基础信息获取

11 控制点的布设与测量

项目控制点布设的工作底图是 SPOT 5_25 m 遥感影像,河南省域涉及 80 多景 SPOT 5 影像,受卫星数据获取周期的影响,影像是分批次提供的,为保证项目进度,控制点的布设采用先来先选的原则分批次进行。选取要求有:

(1)选取影像清晰、易于判别、交通便利的明显特征点,如影像特征明显的农村道路交叉路口,并读取概略经纬度;

(2)均匀分布,控制区域大于工作区范围,每景控制点数不少于 25 个,山区适当增加;

(3)边缘选点,相邻影像重叠区不少于 2 个同名公共点;

(4)模糊定位、圈定范围,为便于精确定位点的灵活性,采用 800 像素 ×800 像素的正方形选框,外业测量时可以在此选框内灵活定点,一般要求选框中间点位优先选用;

(5)内业选点难以测量时,可适当在该点附近重新选点,外业要作详细记录。

项目区覆盖多景影像,为的是选点均匀,公共点布局合理,在选取某景影像控制点时应同时参照相邻景,单景保证四角有点,其间三角形布点。控制点编号采用××××××_××××××_××,第一个“_”前为控制点所在景号,第一、第二个“_”之间为控制点所在影像的时相,共 6 位,采用年月日格式,第二个“_”后为控制点所在影像内序号,如 273280_061101_10, 表示景号为 273280、时相为 2006 年 11 月 1 日的影像上的第 10 个控制点,另外在测量成果表中增加测量编号和标准编号,测量编号是控制点布设实时编号,对应外业测量表中的序号,标准编号则按 1∶1 万标准图幅为基准,自上而下、自左而右的编号,如I49G030050, 以求更好地管理和应用控制点基础资料,为此我们设计了控制点测量成果表。

考虑到项目区山区、丘陵、平原均有分布,不同地形都选取检查点,在布点时类同控制点选取,只是在影像正射纠正时根据参与运算与否才设定其是控制点或是检查点。三种地形特征检查点可以从不同地形下分析控制点精度,对于布点较为困难的山区,可以打破单景的局限,采用区域布点检查法。

以国家 C 级 GPS 大地控制点为基准,采用静态方式同步进行观测,3 套 GPS 接收机为一组,观测时段长度为 45 min,卫星高度角≥ 15°,有效卫星总数≥ 4 个,作业员现场填写外业测量记录表,测队队员定时进行业内汇合,整个省域全部控制点测量耗时近 1 年,共完成 1454 个控制点的测量。

项目共布设 13 个测区,外业实地测量均采用环形布点形成一个整体的 GPS 控制网,各测区以不同的颜色表示,控制点间平均距离约 13 km,点位序号是项目区需要测量的纠正控制点测量编号,不足 4 位的前加“P”表示,前面加“C”的点则表示已有的 C 级 GPS 控制点。

12 控制点坐标及投影带的设置

控制点有 4 套坐标系统:西安 1980 坐标、北京 1954 坐标、WGS84 坐标、概略经纬度及高程。

项目采用高斯-克吕格投影 3 度分带、1985 国家高程基准、北京 1954 坐标系。河南省域跨越 37、38、39 带,测量的坐标数据存在 3 套数据,通常构建数据库时坐标系统的中央经线为114°,即 38 带。为确保整个省域建库数据为统一的坐标系统,就应把 37 带、39 带内的控制点进行换算,一般采用高斯投影、反算公式间接换带计算。现在把 37 带、39 带的控制点坐标换算成 38 带,见表 1。实测测量时,可通过仪器设置或基于坐标换带公式原理开发的专用软件换算。

表1 GPS 控制点 3 度分带相邻带坐标换算对应表(河南省)

续表

13 属性结构设定

为便于管理控制点图形图像数据库,并为后续国土研究提供基础资料,因此尽可能详述控制点的属性信息。表 2 是设定的控制点库表结构。

表2 控制点文件属性结构一览表

属性结构设定的特色:

(1)3 套编号系统(标准编号、景内编号、测量编号)。标准编号是所有 GPS 实测控制点选取完毕后,为便于管理,以 1∶1 万标准图幅为底图采用“自上而下、自左而右”原则重新编号,命名采用“1∶1 万标准图幅号 _ 图幅内序号”;景内编号则是就单景而言,景号 _ 时相 _ 景内序号命名;测量编号则是在项目实施中实际工作选点编号,作为控制点成果表整理及入库的依据。

(2) 4 套坐标数据(北京 1954 坐标、西安 1980 坐标、WGS84、概略经纬度)。概略经纬度可以对控制点在实地测量前进行模糊定位,此外也为了后期插叙的需要,例如,对一景现实性影像,通过幅宽经纬度可查询到其间大致所覆盖的控制点信息,减少了选点、测点等重复性工作。

(3)挂接点位影像、图形及实地信息。控制点影像库不仅有点的属性描述,也有点位图形和实测信息,使控制点信息更加丰富。

(4)与权属库、接合图表、影像范围图叠合,便于查看控制点的区域型分布、与影像及图幅间的关系。

14 与遥感影像的套合

控制点是遥感影像定位的基本参照信息,已知工作区的 DEM 和影像控制点坐标信息,就可以对影像进行几何纠正和投影差改正,制作数字正射影像图(DOM),提取土地利用现状信息,构建土地利用数据库,此亦第二次全国土地调查的前期业内工作。通常,我们是先在原始影像上布设控制点,测量其坐标信息,然后影像处理,即影像选取点、点定位影像的工作模式。但建立河南省控制点图形图像数据库后,对省域内任意工作区的影像,即没有投影和平面坐标信息的现时性影像,可以通过影像头文件找其所包含的控制点信息,避免了重复选点、测点。

控制点影像数据与遥感影像的套合、叠加查询分析,需要两者间存在恒定的某种信息。控制点是地球上的固定点,SPOT 5 遥感影像的头文件里显示影像获取时间及影像的经纬度坐标(大地坐标),为避免大地坐标与高斯平面坐标转换时的误差影响影像处理精度,目前只能通过两者的经纬度坐标,对影像包括的控制点信息进行模糊查询,然后再准确定位点。在 MapGIS 平台中,可以通过影像的经纬度坐标将其范围框直接定位到控制点图形图像数据库的平面坐标工程上,很直观地查看三者间的关系,如图 1 所示。

图1 控制点、影像、行政区空间关系图

2 控制点图形图像数据库构建

经过“布点、测点”后,在 ERDAS 软件的 LPS 模块里对控制点进行严格的精度检查,只有满足精度要求后才可入库,具体流程如图 2 所示。同时设定了数据库文件的组织(表 3)。基于上述数据库建设思路,在 MapGIS 平台上构建了控制点图形图像数据库,如图 3 所示。

图2 GPS 控制点图形图像数据库建库流程

图3 河南省 GPS 控制点图形图像数据库

表3 GPS 控制点图形图像数据库文件

3 结 论

控制点作为基础地理数据,其重要性不言而喻,河南省域共布设 1000 多个实测控制点,历时近 1 年,耗费了相当的人力物力,控制点图形图像数据库的建立旨在实现信息共享,避免资源浪费,为国土及其他领域的研究提供了宝贵的基础资料,尤其是在第二次全国土地调查河南工作区,控制点图形图像数据库对调查底图制作起到了十分重要的作用。另外,省域型控制点图形图像的建立也为大区域多数量控制点数据的综合管理提供了点滴参照。当然也有未涉及的内容,如不同等级控制点的管理、控制点的三维布局再现等。

参 考 文 献

GB/T 18314—200《1全球定位系统(GPS)测量规范》[S]

苏小霞,李英成2006全国多级多分辨率图形图像控制点数据库的建立与应用展望[J] 遥感技术与应用,21(3):265~230

王之卓1990摄影测量原理(英文版)[M] 武汉:武汉测绘科技大学出版社

曾福年,赵翠玲2006图像控制点库的建立及应用方法探讨[C]2006 年中国土地学会学术年会论文集

张继贤,马瑞金2000图形图像控制点库及应用[J] 测绘通报(1):15~17

(原载《郑州大学学报(工学版)》2008 年第 2 期)

Image型信息是二进制的,SQL可能显示不了,软件里可以用

text数据稍要长一点的话,只要转一下就行,convert(nvarchar(4000),texttxt)

以上就是关于电脑桌面上的快捷图标打不开,双击之后说是无法从当前配置的位置打开图像数据库全部的内容,包括:电脑桌面上的快捷图标打不开,双击之后说是无法从当前配置的位置打开图像数据库、(急)数字图像处理主要包含哪八个方面的内容、基于IWS的土地利用动态变化的影像发布系统构建等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9542383.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-29
下一篇 2023-04-29

发表评论

登录后才能评论

评论列表(0条)

保存