大数据是什么

大数据是什么,第1张

数据是指在一定时间内,常规软件工具无法捕捉、管理和处理的数据集合。它是一种海量、高增长、多元化的信息资产,需要一种新的处理模式,以具备更强的决策、洞察和流程优化能力。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些有意义的数据进行专业的处理。换句话说,如果把大数据比作一个行业,这个行业盈利的关键在于提高数据的“处理能力”,通过“处理”实现数据的“增值”。

从技术上讲,大数据和云计算的关系就像硬币的正反面一样密不可分。大数据不能用单台计算机处理,必须采用分布式架构。其特点在于海量数据的分布式数据挖掘。但它必须依赖云计算分布式处理、分布式数据库、云存储和虚拟化技术。

扩展信息:

大数据只是现阶段互联网的一个表征或特征。没有必要将其神话或保持敬畏。在以云计算为代表的技术创新背景下,这些原本看似难以收集和使用的数据开始被轻松使用。通过各行各业的不断创新,大数据将逐渐为人类创造更多的价值。

是体现大数据技术价值的手段,是进步的基石。这里从云计算、分布式处理技术、存储技术、感知技术的发展,阐述大数据从采集、处理、存储到形成结果的全过程。

实践是大数据的终极价值。在这里,我们从互联网大数据、政府大数据、企业大数据、个人大数据四个方面来描绘大数据的美好图景和将要实现的蓝图。

大数据是指在一定时间内,常规软件工具无法捕捉、管理和处理的数据集合。它是一种海量、高增长、多元化的信息资产,需要一种新的处理模式,以具备更强的决策、洞察和流程优化能力。

大数据技术的战略意义不在于掌握庞大的数据信息,而在于对这些有意义的数据进行专业的处理。换句话说,如果把大数据比作一个行业,这个行业盈利的关键在于提高数据的“处理能力”,通过“处理”实现数据的“增值”。

从技术上讲,大数据和云计算的关系就像硬币的正反面一样密不可分。大数据不能用单台计算机处理,必须采用分布式架构。其特点在于海量数据的分布式数据挖掘。但它必须依赖云计算分布式处理、分布式数据库、云存储和虚拟化技术。

扩展信息:

大数据只是现阶段互联网的一个表征或特征。没有必要将其神话或保持敬畏。在以云计算为代表的技术创新背景下,这些原本看似难以收集和使用的数据开始被轻松使用。通过各行各业的不断创新,大数据将逐渐为人类创造更多的价值。

是体现大数据技术价值的手段,是进步的基石。这里从云计算、分布式处理技术、存储技术、感知技术的发展,阐述大数据从采集、处理、存储到形成结果的全过程。

实践是大数据的终极价值。在这里,我们从互联网大数据、政府大数据、企业大数据、个人大数据四个方面来描绘大数据的美好图景和将要实现的蓝图。

随着大数据发展越来越好,数据挖掘成为了未来发展的一大趋势。数据挖掘主要是使用未来趋势和行为作出前摄的、基础知识的决策。下面北京电脑培训为大家介绍数据挖掘具备的功能。

一、自动预测趋势和行为

数据挖掘在大型数据库中自动查询预测信息,在很早之前,大量的手工分析问题都可以快速和直接的从数据本身得到结论。

二、关联分析

数据关联是数据中能够发现的一种重要知识。如果在两个和多个变值之间存在一定的规律,这就是所谓的相关性。关联可以分为简单相关、时间相关和因果相关。其中北京IT培训发现关联分析的目的主要是找出数据库中隐藏的网络。数据库中关联的数据有时是未知的、有时是已知的、有时是不确定的,所以关联分析生成的规则才具有可信度。

三、聚类

数据库中的记录能够分为一系类有意义的子集,即聚类。聚类能够提高人们对客观现实的理解,是概念记述和偏差分析的前提。北京IT培训发现聚类主要包括传统的模式识别方法和数学分类法。

四、概念描述

概念描述是对目标类别的内容的描述,以及此类目的相关特征的摘要。概念描述分为特征性描述和区别性描述,描述了不同物体之间的差异。北京电脑培训认为制定一类特征说明只会影响所有物体的共同要素。进行区别描述的方法还是很多种,如决策树方法、遗传学方法等。

直接数据挖掘:目标是利用可用的数据建立一个模型,这个模型对剩余的数据,对一个特定的变量(可以理解成数据库中表的属性,即列)进行描述。

间接数据挖掘:目标中没有选出某一具体的变量,用模型进行描述;而是在所有的变量中建立起某种关系。

数据挖掘的方法

神经网络方法

神经网络由于本身良好的鲁棒性、自组织自适应性、并行处理、分布存储和高度容错等特性非常适合解决数据挖掘的问题,因此近年来越来越受到人们的关注。

遗传算法

遗传算法是一种基于生物自然选择与遗传机理的随机搜索算法,是一种仿生全局优化方法。遗传算法具有的隐含并行性、易于和其它模型结合等性质使得它在数据挖掘中被加以应用。

决策树方法

决策树是一种常用于预测模型的算法,它通过将大量数据有目的分类,从中找到一些有价值的,潜在的信息。它的主要优点是描述简单,分类速度快,特别适合大规模的数据处理。

粗集方法

粗集理论是一种研究不精确、不确定知识的数学工具。粗集方法有几个优点:不需要给出额外信息;简化输入信息的表达空间;算法简单,易于 *** 作。粗集处理的对象是类似二维关系表的信息表。

覆盖正例排斥反例方法

它是利用覆盖所有正例、排斥所有反例的思想来寻找规则。首先在正例集合中任选一个种子,到反例集合中逐个比较。与字段取值构成的选择子相容则舍去,相反则保留。按此思想循环所有正例种子,将得到正例的规则(选择子的合取式)。

统计分析方法

在数据库字段项之间存在两种关系:函数关系和相关关系,对它们的分析可采用统计学方法,即利用统计学原理对数据库中的信息进行分析。可进行常用统计、回归分析、相关分析、差异分析等。

模糊集方法

即利用模糊集合理论对实际问题进行模糊评判、模糊决策、模糊模式识别和模糊聚类分析。系统的复杂性越高,模糊性越强,一般模糊集合理论是用隶属度来刻画模糊事物的亦此亦彼性的。

数据挖掘任务

关联分析

两个或两个以上变量的取值之间存在某种规律性,就称为关联。数据关联是数据库中存在的一类重要的、可被发现的知识。关联分为简单关联、时序关联和因果关联。关联分析的目的是找出数据库中隐藏的关联网。一般用支持度和可信度两个阀值来度量关联规则的相关性,还不断引入兴趣度、相关性等参数,使得所挖掘的规则更符合需求。

聚类分析

聚类是把数据按照相似性归纳成若干类别,同一类中的数据彼此相似,不同类中的数据相异。聚类分析可以建立宏观的概念,发现数据的分布模式,以及可能的数据属性之间的相互关系。

分类

分类就是找出一个类别的概念描述,它代表了这类数据的整体信息,即该类的内涵描述,并用这种描述来构造模型,一般用规则或决策树模式表示。分类是利用训练数据集通过一定的算法而求得分类规则。分类可被用于规则描述和预测。

预测

预测是利用历史数据找出变化规律,建立模型,并由此模型对未来数据的种类及特征进行预测。预测关心的是精度和不确定性,通常用预测方差来度量。

时序模式

时序模式是指通过时间序列搜索出的重复发生概率较高的模式。与回归一样,它也是用己知的数据预测未来的值,但这些数据的区别是变量所处时间的不同。

偏差分析

在偏差中包括很多有用的知识,数据库中的数据存在很多异常情况,发现数据库中数据存在的异常情况是非常重要的。偏差检验的基本方法就是寻找观察结果与参照之间的差别。

主要技术有五类。根据查询大数据相关资料得知,大数据分析的主要技术分为以下5类。

1、数据采集:对于任何的数据分析来说,首要的就是数据采集,因此大数据分析软件的第一个技术就是数据采集的技术,该工具能够将分布在互联网上的数据,一些移动客户端中的数据进行快速而又广泛的搜集,同时它还能够迅速的将一些其他的平台中的数据源中的数据导入到该工具中,对数据进行清洗、转换、集成等,从而形成在该工具的数据库中或者是数据集市当中,为联系分析处理和数据挖掘提供了基础。

2、数据存取:数据在采集之后,大数据分析的另一个技术数据存取将会继续发挥作用,能够关系数据库,方便用户在使用中储存原始性的数据,并且快速的采集和使用,再有就是基础性的架构,比如说运储存和分布式的文件储存等,都是比较常见的一种。

3、数据处理:数据处理可以说是该软件具有的最核心的技术之一,面对庞大而又复杂的数据,该工具能够运用一些计算方法或者是统计的方法等对数据进行处理,包括对它的统计、归纳、分类等,从而能够让用户深度的了解到数据所具有的深度价值。

4、统计分析:统计分析则是该软件所具有的另一个核心功能,比如说假设性的检验等,可以帮助用户分析出现某一种数据现象的原因是什么,差异分析则可以比较出企业的产品销售在不同的时间和地区中所显示出来的巨大差异,以便未来更合理的在时间和地域中进行布局。

5、相关性分析:某一种数据现象和另外一种数据现象之间存在怎样的关系,大数据分析通过数据的增长减少变化等都可以分析出二者之间的关系,此外,聚类分析以及主成分分析和对应分析等都是常用的技术,这些技术的运用会让数据开发更接近人们的应用目标

以上就是关于大数据是什么全部的内容,包括:大数据是什么、聚类算法的聚类要求、什么是大数据等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/sjk/9866227.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-02
下一篇 2023-05-02

发表评论

登录后才能评论

评论列表(0条)

保存