五 索引分类
直接创建索引和间接创建索引
直接创建索引 CREATE INDEX mycolumn_index ON mytable (myclumn)
间接创建索引 定义主键约束或者唯一性键约束 可以间接创建索引
普通索引和唯一性索引
普通索引 CREATE INDEX mycolumn_index ON mytable (myclumn)
唯一性索引 保证在索引列中的全部数据是唯一的 对聚簇索引和非聚簇索引都可以使用
CREATE UNIQUE COUSTERED INDEX myclumn_cindex ON mytable(mycolumn)
单个索引和复合索引
单个索引 即非复合索引
复合索引 又叫组合索引 在索引建立语句中同时包含多个字段名 最多 个字段
CREATE INDEX name_index ON username(firstname lastname)
聚簇索引和非聚簇索引(聚集索引 群集索引)
聚簇索引 物理索引 与基表的物理顺序相同 数据值的顺序总是按照顺序排列
CREATE CLUSTERED INDEX mycolumn_cindex ON mytable(mycolumn) WITH
ALLOW_DUP_ROW(允许有重复记录的聚簇索引)
非聚簇索引 CREATE UNCLUSTERED INDEX mycolumn_cindex ON mytable(mycolumn)
六 索引的使用
当字段数据更新频率较低 查询使用频率较高并且存在大量重复值是建议使用聚簇索引
经常同时存取多列 且每列都含有重复值可考虑建立组合索引
复合索引的前导列一定好控制好 否则无法起到索引的效果 如果查询时前导列不在查询条件中则该复合索引不会被使用 前导列一定是使用最频繁的列
多表 *** 作在被实际执行前 查询优化器会根据连接条件 列出几组可能的连接方案并从中找出系统开销最小的最佳方案 连接条件要充份考虑带有索引的表 行数多的表内外表的选择可由公式 外层表中的匹配行数*内层表中每一次查找的次数确定 乘积最小为最佳方案
where子句中对列的任何 *** 作结果都是在sql运行时逐列计算得到的 因此它不得不进行表搜索 而没有使用该列上面的索引如果这些结果在查询编译时就能得到 那么就可以被sql优化器优化 使用索引 避免表搜索(例 select * from record where substring(card_no )=
&&select * from record where card_no like % )任何对列的 *** 作都将导致表扫描 它包括数据库函数 计算表达式等等 查询时要尽可能将 *** 作移至等号右边
where条件中的 in 在逻辑上相当于 or 所以语法分析器会将in ( ′ ′)转化为column= ′ or column= ′来执行 我们期望它会根据每个or子句分别查找 再将结果相加 这样可以利用column上的索引但实际上它却采用了 or策略 即先取出满足每个or子句的行 存入临时数据库的工作表中 再建立唯一索引以去掉重复行 最后从这个临时表中计算结果 因此 实际过程没有利用column上索引 并且完成时间还要受tempdb数据库性能的影响 in or子句常会使用工作表 使索引失效如果不产生大量重复值 可以考虑把子句拆开拆开的子句中应该包含索引
要善于使用存储过程 它使sql变得更加灵活和高效
lishixinzhi/Article/program/MySQL/201311/29603https://blog.csdn.net/weixin_43935927/article/details/109491334
建立索引,要使用离散度(选择度)更高的字段。
我们先来看一个重要的属性列的 离散度,
count(distinct(column_name)) : count(*) -- 列的全部不同值个数:所有数据行行数
数据行数相同的情况下,分子越大,列的离散度就越高。简单来说,如果列的重复值越多,离散度就越低,重复值越少,离散度就越高。
当字段值比较长的时候,建立索引会消耗很多的空间,搜索起来也会很慢。我们可以通过截取字段的前面一部分内容建立索引,这个就叫前缀索引。
创建一张商户表,因为地址字段比较长,在地址字段上建立前缀索引
create table shop(address varchar(120) not null)
alter table shop add key(address(12)) // 截取12个字符作为前缀索引是最优的吗?
问题是,截取多少呢?截取得多了,达不到节省索引存储空间的目的,截取得少了,重复内容太多,字段的散列度(选择性)会降低。怎么计算不同的长度的选择性呢?
先看一下字段在全部数据中的选择度计算公式:
select count(distinct address) / count(*) from shop
select count(distinct left(address, n)) / count(*) as subn from shop
count(distinct left(address,n)) / count(*) 的结果是会随着 n 的变大而变大。举个例子,现在有两个address(东大街长兴小区,东大街福乐小区),那么 distinct(address,2) <distinct(address,3)
==>所以,截取的长度越长就会越接近字段在全部数据中的选择度
==>所以,我们要权衡索引大小和查询速度。
举个例子,通过不同长度去计算,与全表的选择性对比:
SELECT COUNT(DISTINCT(address))/COUNT(*) sub, -- 字段在全部数据中的选择度
COUNT(DISTINCT(LEFT(address,5)))/COUNT(*) sub5, -- 截取前5个字符的选择度
COUNT(DISTINCT(LEFT(address,7)))/COUNT(*) sub7,
COUNT(DISTINCT(LEFT(address,9)))/COUNT(*) sub9,
COUNT(DISTINCT(LEFT(address,10)))/COUNT(*) sub10, -- 截取前10个字符的选择度
COUNT(DISTINCT(LEFT(address,11)))/COUNT(*) sub11,
COUNT(DISTINCT(LEFT(address,12)))/COUNT(*) sub12,
COUNT(DISTINCT(LEFT(address,13)))/COUNT(*) sub13,
COUNT(DISTINCT(LEFT(address,15)))/COUNT(*) sub15
FROM shop
+--------+--------+--------+--------+--------+--------+--------+--------+--------+
| sub | sub5 | sub7 | sub9 | sub10 | sub11 | sub12 | sub13 | sub15 |
+--------+--------+--------+--------+--------+--------+--------+--------+--------+
| 0.9993 | 0.0225 | 0.4663 | 0.8618 | 0.9734 | 0.9914 | 0.9943 | 0.9943 | 0.9958 |
+--------+--------+--------+--------+--------+--------+--------+--------+--------+
可以看到在截取 11 个字段时 sub11(0.9993) 就已经很接近字段在全部数据中的选择度 sub(0.9958)了,而且长度也相较后面更短一些, 综合考虑比较合适。
ALTER TABLE shop ADD KEY (address(11))
1.索引的个数不要过多(浪费空间,更新变慢)
2.在用于 where 判断 order 排序和 join 的(on)字段上创建索引
3.区分度低的字段,例如性别,不要建索引(离散度太低,导致扫描行数过多)
4.更新频繁的值,不要作为主键或者索引(页分裂)
5.不建议用无序的值作为索引,例如身份z、UUID(在索引比较时需要转为ASCII,并且插入时可能造成页分裂)
6.若在多个字段都要创建索引的情况下,联合索引优于单值索引
7.联合索引把散列性高(区分度高)的值放在前面
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)