数据库是面向事务的设计,数据仓库是面向主题设计的。数据库一般存储在线交易数据,数据仓库存储的一般是历史数据。
“与时间相关”:数据库保存信息的时候,并不强调一定有时间信息。数据仓库则不同,出于决策的需要,数据仓库中的数据都要标明时间属性。决策中,时间属性很重要。同样都是累计购买过九车产品的顾客,一位是最近三个月购买九车,一位是最近一年从未买过,这对于决策者意义是不同的。
“不可修改”:数据仓库中的数据并不是最新的,而是来源于其它数据源。数据仓库反映的是历史信息,并不是很多数据库处理的那种日常事务数据(有的数据库例如电信计费数据库甚至处理实时信息)。因此,数据仓库中的数据是极少或根本不修改的;当然,向数据仓库添加数据是允许的。
拓展资料:数据仓库的出现,并不是要取代数据库。数据仓库,是在数据库已经大量存在的情况下,为了进一步挖掘数据资源、为了决策需要而产生的,它决不是所谓的“大型数据库”。
目前,大部分数据仓库还是用关系数据库管理系统来管理的。可以说,数据库、数据仓库相辅相成、各有千秋。
1、存放值区别:
数据库只存放在当前值,数据仓库存放历史值;
2、数据变化区别:
数据库内数据是动态变化的,只要有业务发生,数据就会被更新,而数据仓库则是静态的历史数据,只能定期添加、刷新;
3、数据结构区别:
数据库中的数据结构比较复杂,有各种结构以适合业务处理系统的需要,而数据仓库中的数据结构则相对简单;
4、访问频率不同:
数据库中数据访问频率较高,但访问量较少,而数据仓库的访问频率低但访问量却很高;
5、目标人群区别:
数据库中数据的目标是面向业务处理人员的,为业务处理人员提供信息处理的支持,而数据仓库则是面向高层管理人员的,为其提供决策支持;
数据仓库:为企业所有级别的决策制定过程,提供所有类型数据支持的战略(数据)集合。
大数据:所涉及的资料量规模巨大到无法透过主流软件工具,在合理时间内达到撷取、管理、处理、并整理成为帮助企业经营决策更积极目的的资讯。
传统数据库:一个长期存储在计算机内的、有组织的、可共享的、统一管理的大量数据的集合。
其实从三个定义,我们好像区别不大。
数据库指的是数据的集合,数据仓库也是一个数据集合,大数据也是一个处理和存储数据的地方。
但是不同的是,在于应用场景,和构建的技术原理不一样。
传统数据库是存储根据范式建模的关系型数据,主要用于OLTP(on-line transaction processing)翻译为联机事务处理的软件。大数据是根据map redurce范式构建的出局处理,存储的软件,主要用于OLAP是做分析处理。大数据和传统数据库,还有一个更大的区别在于,处理的数据量以及计算量的大小,当传统数据库,无法在人可以接受的短时间内计算出结果,那这个数据就叫大数据,需要使用到大数据技术处理。而数据仓库本质上是一种数据的处理方式,而不是一种基础软件,它可以依赖于传统数据库,也可以依赖大数据技术去构建。
可以参考这篇文章:数据仓库(2)数据仓库、大数据与传统数据库的区别 - 知乎 (zhihu.com)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)