1)HDFS块(Block):它是HDFS上的最小的副本单位,HDFS会把一个Block存储在本地的一个文件并且维护分散在不同的机器上的多个副本,通常情况下一个Block的大小为256M、512M等。
2)HDFS文件(File):一个HDFS的文件,包括数据和元数据,数据分散存储在多个Block中。
3)行组(Row Group):按照行将数据物理上划分为多个单元,每一个行组包含一定的行数,在一个HDFS文件中至少存储一个行组,Parquet读写的时候会将整个行组缓存在内存中,所以如果每一个行组的大小是由内存大的小决定的。
4)列块(Column Chunk):在一个行组中每一列保存在一个列块中,行组中的所有列连续的存储在这个行组文件中。不同的列块可能使用不同的算法进行压缩。
5)页(Page):每一个列块划分为多个页,一个页是最小的编码的单位,在同一个列块的不同页可能使用不同的编码方式。
Parquet文件的格式如下图所示:
可以看出,存储格式中元数据索引信息是被存储在最后的,所以当读取某一行的数据的时候,就需要去定位最后的索引信息,最后才能去读取对应的行数据。元数据包括 Parquet 原始类型定义、Page类型、编码类型、压缩类型等等。
Parquet 支持嵌套结构的数据模型,而非扁平式的数据模型,这是 Parquet 相对其他列存比如 ORC 的一大特点或优势。支持嵌套式结构,意味着 Parquet 能够很好的将诸如 Protobuf,thrift,json 等对象模型进行列式存储。
Parquet 的数据模型也是 schema 表达方式,用关键字 message 表示。每个字段包含三个属性,repetition属性(required/repeated/optional)、数据类型(primitive基本类型/group复杂类型)及字段名。如:
和Parquet类似,ORC文件也是以二进制方式存储的,所以是不可以直接读取,ORC文件也是自解析的,它包含许多的元数据,这些元数据都是同构ProtoBuffer进行序列化的。ORC的文件结构如下图,其中涉及到如下的概念:
ORC文件:保存在文件系统上的普通二进制文件,一个ORC文件中可以包含多个stripe,每一个stripe包含多条记录,这些记录按照列进行独立存储,对应到Parquet中的row
group的概念。
文件级元数据:包括文件的描述信息PostScript、文件meta信息(包括整个文件的统计信息)、所有stripe的信息和文件schema信息。
stripe:一组行形成一个stripe,每次读取文件是以行组为单位的,一般为HDFS的块大小,保存了每一列的索引和数据。
stripe元数据:保存stripe的位置、每一个列的在该stripe的统计信息以及所有的stream类型和位置。
row group:索引的最小单位,一个stripe中包含多个row group,默认为10000个值组成。
stream:一个stream表示文件中一段有效的数据,包括索引和数据两类。索引stream保存每一个row group的位置和统计信息,数据stream包括多种类型的数据,具体需要哪几种是由该列类型和编码方式决定。
在ORC文件中保存了三个层级的统计信息,分别为文件级别、stripe级别和row group级别的,他们都可以用来根据Search ARGuments(谓词下推条件)判断是否可以跳过某些数据,在统计信息中都包含成员数和是否有null值,并且对于不同类型的数据设置一些特定的统计信息。
读取ORC文件是从尾部开始的,第一次读取16KB的大小,尽可能的将Postscript和Footer数据都读入内存。文件的最后一个字节保存着PostScript的长度,它的长度不会超过256字节,PostScript中保存着整个文件的元数据信息,它包括文件的压缩格式、文件内部每一个压缩块的最大长度(每次分配内存的大小)、Footer长度,以及一些版本信息。在Postscript和Footer之间存储着整个文件的统计信息(上图中未画出),这部分的统计信息包括每一个stripe中每一列的信息,主要统计成员数、最大值、最小值、是否有空值等。
接下来读取文件的Footer信息,它包含了每一个stripe的长度和偏移量,该文件的schema信息(将schema树按照schema中的编号保存在数组中)、整个文件的统计信息以及每一个row group的行数。
处理stripe时首先从Footer中获取每一个stripe的其实位置和长度、每一个stripe的Footer数据(元数据,记录了index和data的的长度),整个striper被分为index和data两部分,stripe内部是按照row group进行分块的(每一个row group中多少条记录在文件的Footer中存储),row group内部按列存储。每一个row group由多个stream保存数据和索引信息。每一个stream的数据会根据该列的类型使用特定的压缩算法保存。在ORC中存在如下几种stream类型:
PRESENT:每一个成员值在这个stream中保持一位(bit)用于标示该值是否为NULL,通过它可以只记录部位NULL的值
DATA:该列的中属于当前stripe的成员值。
LENGTH:每一个成员的长度,这个是针对string类型的列才有的。
DICTIONARY_DATA:对string类型数据编码之后字典的内容。
SECONDARY:存储Decimal、timestamp类型的小数或者纳秒数等。
ROW_INDEX:保存stripe中每一个row group的统计信息和每一个row group起始位置信息。
在初始化阶段获取全部的元数据之后,可以通过includes数组指定需要读取的列编号,它是一个boolean数组,如果不指定则读取全部的列,还可以通过传递SearchArgument参数指定过滤条件,根据元数据首先读取每一个stripe中的index信息,然后根据index中统计信息以及SearchArgument参数确定需要读取的row group编号,再根据includes数据决定需要从这些row group中读取的列,通过这两层的过滤需要读取的数据只是整个stripe多个小段的区间,然后ORC会尽可能合并多个离散的区间尽可能的减少I/O次数。然后再根据index中保存的下一个row group的位置信息调至该stripe中第一个需要读取的row group中。
ORC文件格式只支持读取指定字段,还不支持只读取特殊字段类型中的指定部分。
使用ORC文件格式时,用户可以使用HDFS的每一个block存储ORC文件的一个stripe。对于一个ORC文件来说,stripe的大小一般需要设置得比HDFS的block小,如果不这样的话,一个stripe就会分别在HDFS的多个block上,当读取这种数据时就会发生远程读数据的行为。如果设置stripe的只保存在一个block上的话,如果当前block上的剩余空间不足以存储下一个strpie,ORC的writer接下来会将数据打散保存在block剩余的空间上,直到这个block存满为止。这样,下一个stripe又会从下一个block开始存储。
由于ORC中使用了更加精确的索引信息,使得在读取数据时可以指定从任意一行开始读取,更细粒度的统计信息使得读取ORC文件跳过整个row group,ORC默认会对任何一块数据和索引信息使用ZLIB压缩,因此ORC文件占用的存储空间也更小,这点在后面的测试对比中也有所印证。
avro 和 parquet相比有哪些优势呢?
可以跳过不符合条件的数据,只读取需要的数据,降低IO数据量
压缩编码可以降低磁盘存储空间。由于同一列的数据类型是一样的,可以使用更高效的压缩编码(例如Run Length Encoding和Delta Encoding)进一步节约存储空间
只读取需要的列,支持向量运算,能够获取更好的扫描性能
Parquet就是基于Google的Dremel系统的数据模型和算法实现的。核心思想是使用“record shredding and assembly algorithm”来表示复杂的嵌套数据类型,同时辅以按列的高效压缩和编码技术,实现降低存
与Avro之前新统计系统的日志都是用Avro做序列化和存储,鉴于Parquet的优势和对Avro的兼容,将HDFS上的存储格式改为Paruqet,并且只需做很小的改动就用原读取Avro的API读取Parquet,以提高近一个数量级。
Parquet文件尾部存储了文件的元数据信息和统计信息,自描述的,方便解析
列式存储和行式存储是针对数据在存储介质中的排序形式而言的,假设存在一张table,那么:
图1-1所示为行式存储和列式存储的示意图,一张table包含5个字段(列)即rowid、date/time、customer name以及quantity,共7行,图中的红色箭头表示存储顺序。
存储形式的差异决定了适用场景的不同:
综合来看,列式存储比较适合大数据量(压缩比高)、分析型 *** 作(针对少数几列);不适合频率较高的删除(全列检索)、更新(重新压缩) *** 作 。
图2-1所示为列式存储中将某张table基于字典表进行编码压缩的示例,图中左边为源表,假设该table中的customers和material字段的取值均只有右上表所示的5种,那么当源表的行数很大时,customers和material字段就会存在大量重复的取值,为了节省存储空间对这两个字段进行编码,即使用一个字典表(右上图)记录该两个字段的distinct取值,又下表则用右上表字段取值对应的index(整数1、2、3、4、5)来代替原来的string,由于string占用的存储空间比这几个index占用的存储空间大多了,因此可以较大程度上压缩占用的存储空间。
基于列式存储的两个典型实现是:hbase和parquet,其中:
parquet的文件结构如图3-1所示:
从图中可以看出,1个parquet文件由header(1个)、block(可以多个)、footer(1个)组成,分别负责:
图3-2所示为parquet文件中,block、rowgroup、columnchunk以及page的关系:
简而言之:
因此如果将一个parquet文件类比成一张大excel 表,那么:
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)