使用Apache-2.0开源协议
通过bboss,可以非常方便地采集database/mongodb/Elasticsearch/kafka/hbase/本地或者Ftp日志文件源数据,经过数据转换处理后,再推送到目标库elasticsearch/database/file/ftp/kafka/dummy/logger。
数据导入的方式
支持各种主流数据库、各种es版本以及本地/Ftp日志文件数据采集和同步、加工处理
支持从kafka接收数据;经过加工处理的数据亦可以发送到kafka;
支持将神链单条记录切割为多条记录;
可以将加工后的数据写入File并上传到ftp/sftp服务器;
支持备份采集完毕日志文件功能,可以指定备份文件保存时长,定期清理超过时长文件;
支持自动清理下载完毕后ftp服务器上的文件
支持excel、csv文件采集(本地和ftp/sftp)
支持导出数据到excel和csv文件,并支持上传到ftp/sftp服务器
提供自定义处理采集数据功能,可以自行将采集的数据按照自己的要求进行处理到目的地,支持数据来源包括:database,elasticsearch,kafka,mongodb,hbase,file,ftp等,想把采集的数据保存到什么地方,有自己实现CustomOutPut接口处理即可。
支持的数据库: mysql,maridb,postgress,oracle ,sqlserver,db2,tidb,hive,mongodb、HBase等
支持的Elasticsearch版本: 1.x,2.x,5.x,6.x,7.x,8.x,+
支持海量PB级数据同步导入功能
支持将ip转换为对应的运营商和城市地理坐标位置信息
支持设置数伏镇据bulk导入任务结果处理回调函数,对每次bulk任务的结果进行成功和失败反馈,然后针对失败的bulk任务通过error和exception方法进行相应处理
支持以下三种作业调度机制:
bboss另一个显著的特色就是直接基于java语言来编写数据同步作业程序,基于强大的java语言和第三方工具包,能够非缺瞎粗常方便地加工和处理需要同步的源数据,然后将最终的数据保存到目标库(Elasticsearch或者数据库);同时也可以非常方便地在idea或者eclipse中调试和运行同步作业程序,调试无误后,通过bboss提供的gradle脚本,即可构建和发布出可部署到生产环境的同步作业包。因此,对广大的java程序员来说,bboss无疑是一个轻易快速上手的数据同步利器。
如果需要增量导入,还需要导入sqlite驱动:
如果需要使用xxjob来调度作业任务,还需要导入坐标:
本文从mysql数据库表td_cms_document导入数据到es中,除了导入上述maven坐标,还需要额外导入mysql驱动坐标(其他数据库驱动程序自行导入): mysql 5.x驱动依赖包
mysql 8.x驱动依赖包(mysql 8必须采用相应版本的驱动,否则不能正确运行)
私信回复:数据同步ETL工具
或访问一飞开源:https://code.exmay.com/
对于做过 BI 开发的朋友,ETL 并不陌生,只要涉及到数据源的数据抽取、数据的计算和处理过程的开发,都是 ETL,ETL 就这三个阶段,Extraction 抽取,Transformation 转换,Loading 加载。
从不同数据源抽取数据 EXTRACTION ,按照一定的数据处理规则对数据进行加工和格式转换 TRASFORMATION,最后处理完成的输出到目标数据表中也有可能是文件等等,这个就是 LOADING。
再通俗一点讲,ETL 的过程就跟大家日常做菜一样,需要到菜市场的各个摊位买好菜,把菜买回来要摘一下,洗一洗,切一切最后下锅把菜炒好端到饭桌上。菜市场的各个摊位就是数据源,做好的菜就是最终的输出结果,中间的所有过程像摘菜、洗菜、切菜、做菜就是转换。
在开发者歼的时候,大部分时候会通过 ETL 工具去实现,比如常用的像 KETTLE、PENTAHO、IBM DATASTAGE、INFORNAICA、微软 SQL SERVER 里面的 SSIS 等等,在结合基本的 SQL 来实现整个 ETL 过程。
也有的是自己通过程序开发,然后控制一些数据处理脚本跑批,基本上就是程序加 SQL 实现。
哪种方式更好,也是需要看使用场景和开发人员对那种方式使用的更加得心应手。我看大部分软件程序开发人员出身的,碰到数据类项目会比较喜欢用程序控制跑批,这是程序思维的自然延续。纯 BI 开发人员大部分自然就选择成熟的 ETL 工具来开发,当然也有一上来就写程序脚本的,这类 BI 开发人员的师傅基本上是程序人员转过来的。
用程序的好处就是适配性强,可扩展性强,可以集成或拆解到到任何的程序处理过程中,有的时候使用程序开发效率更高。难就难在对维护人员有一定的技术要求,经验转移和可复制性不够。
用 ETL 工具的好处,第一是整个 ETL 的开发过程可视化了,特别是在数据处理流程的分层设计中可以很清晰的管理。第二是链接到不同数据源的时候,各种数据源、数据库的链接协议已经内置了,直接配置就可以,不需要再去写程序去实现。第三是各种转换控件基本上拖拉拽就可以使用,起到简化的代替一部分 SQL 的开发,不需要写代码去实现扮陪。第四是可以非常灵活的设计各种 ETL 调度规则,高度配置化,这个也不需要写代码实现。
所以在大多数通用的项目中,在项目上使用 ETL 标准组件开发会比较多一些。
ETL 从逻辑上一般可以分为两层,控制流和数据流,这也是很多 ETL 工具设计的理念,不同的 ETL 工具可能叫法不同。
控制流就是控制每一个数据流与数据流处理的先后流程,一个控制流可以包含多个数据流。比厅嫌蠢如在数据仓库开发过程中,第一层的处理是ODS层或者Staging 层的开发,第二层是DIMENSION维度层的开发,后面几层就是DW 事实层、DM数据集市层的开发。通过ETL的调度管理就可以让这几层串联起来形成一个完整的数据处理流程。
数据流就是具体的从源数据到目标数据表的数据转换过程,所以也有 ETL 工具把数据流叫做转换。在数据流的开发设计过程中主要就是三个环节,目标数据表的链接,这两个直接通过 ETL 控件配置就可以了。中间转换的环节,这个时候就可能有很多的选择了,调 SQL 语句、存储过程,或者还是使用 ETL 控件来实现。
有的项目上习惯使用 ETL 控件来实现数据流中的转换,也有的项目要求不使用标准的转换组件使用存储过程来调用。也有的是因为数据仓库本身这个数据库不支持存储过程就只能通过标准的SQL来实现。
我们通常讲的BI数据架构师其实指的就是ETL的架构设计,这是整个BI项目中非常核心的一层技术实现,数据处理、数据清洗和建模都是在ETL中去实现。一个好的ETL架构设计可以同时支撑上百个包就是控制流,每一个控制流下可能又有上百个数据流的处理过程。之前写过一篇技术文章,大家可以搜索下关键字 BIWORK ETL 应该在网上还能找到到这篇文章。这种框架设计不仅仅是ETL框架架构上的设计,还有很深的ETL项目管理和规范性控制器思想,包括后期的运维,基于BI的BI分析,ETL的性能调优都会在这些框架中得到体现。因为大的BI项目可能同时需要几十人来开发ETL,框架的顶层设计就很重要。
数据采集ETL工具 Elasticsearch-datatran v6.3.9 发布。
Elasticsearch-datatran 由 bboss 开源的数据采集同步ETL工具,提供数据采集、数据清洗转换处理和数据入库功能。支持在Elasticsearch、关系数据库(mysql,oracle,db2,sqlserver、达梦等)、Mongodb、HBase、Hive、Kafka、文本文件、SFTP/FTP多种数据源之间进行海量数据采集同步;支持本地/ftp日志文件实时增量采集到kafka/elasticsearch/database;支持根据字段进行数据记录切割;支持根据文件路径信息将不同文件数据写入不同的数据库表。
提供自定义处理采集数据功能,可以按照自己的要求将采集告敬数的数据处理到目的稿激地,支持数据来源包括:database,elasticsearch,kafka,mongodb,hbase,file,ftp等,想把采集的数据保存到什么地方,由自己实现CustomOutPut接口处理即可。
Elasticsearch版本兼容性:支持 各种Elasticsearch版本(1.x,2.x,5.x,6.x,7.x,+)之间相互数据迁移
v6.3.9 功能改进
导入微服务容器组件包:由bboss-rt调整为bboss-bootstrap-rt
gradle坐标
group: 'com.bbossgroups' , name: 'bboss-bootstrap-rt' , version: "5.8.5" , transitive: true
maven坐标袜首
bboss数据采集ETL案例大全
https://esdoc.bbossgroups.com/#/bboss-datasyn-demo
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)