一、创建一个列表
只要把逗号分隔的不同的数据项使用方括号括起来即可。如下所示:
复制代码代码如下:
list1 = ['physics', 'chemistry', 1997, 2000];
list2 = [1, 2, 3, 4, 5 ];
list3 = ["a", "b", "c", "d"];
与字符串的索引一样,列表索引从0开始。列表可以进行截取、组合等。
二、访问列表中的值
使用下标索引来访问列表中的值,同样你也可以使用方括号的形式截取字符,如下所示:
复制代码代码如下:
#!/usr/bin/python
list1 = ['physics', 'chemistry', 1997, 2000];
list2 = [1, 2, 3, 4, 5, 6, 7 ];
print "list1[0]: ", list1[0]
print "list2[1:5]: ", list2[1:5]
以上实例输出结果:
复制代码代码如下:
list1[0]: physics
list2[1:5]: [2, 3, 4, 5]
三、更新列表
你可以对列表的数据项进行修改或更新,你也可以使用append()方法来添加列表项,如下所示:
复制代码代码如下:
#!/usr/bin/python
list = ['physics', 'chemistry', 1997, 2000];
print "Value available at index 2 : "
print list[2];
list[2] = 2001;
print "New value available at index 2 : "
Python在大数据行业非常火爆近两年,as a pythonic,所以也得涉足下大数据分析,下面就聊聊它们。
Python数据分析与挖掘技术概述
所谓数据分析,即对已知的数据进行分析,然后提取出一些有价值的信息,比如统计平均数,标准差等信息,数据分析的数据量可能不会太大,而数据挖掘,是指对大量的数据进行分析与挖倔,得到一些未知的,有价值的信息等,比如从网站的用户和用户行为中挖掘出用户的潜在需求信息,从而对网站进行改善等。
数据分析与数据挖掘密不可分,数据挖掘是对数据分析的提升。数据挖掘技术可以帮助我们更好的发现事物之间的规律。所以我们可以利用数据挖掘技术可以帮助我们更好的发现事物之间的规律。比如发掘用户潜在需求,实现信息的个性化推送,发现疾病与病状甚至病与药物之间的规律等。
预先善其事必先利其器
我们首先聊聊数据分析的模块有哪些:
下面就说说这些模块的基础使用。
numpy模块安装与使用
安装:
下载地址是:>
以上就是关于python 列表 *** 作的一个问题全部的内容,包括:python 列表 *** 作的一个问题、python大数据挖掘系列之基础知识入门 知识整理(入门教程含源码)、等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)