怎么用数字万用表测试三极管及场效应管的好坏?

怎么用数字万用表测试三极管及场效应管的好坏?,第1张

场效应管也可以使用指针万用表,同普通三极管一样的测试方法测试。
使用数字万能表测试,只能使用它的专门测试三极管的档位和插座上测试。但是显示出来的β值仅仅作参考。数字万用表电阻档时,两支表笔之间的电压很低,只有0几伏,是不能同指针万用表那样测试三极管的,当然也不能测量场效应管
如果场效应管有两个脚正反向电阻都是0(短路),则肯定是坏的了。

可以用测电阻法测量场效应管的好坏,用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。具体方法:

1、首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。

2、然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法进行检测。

扩展资料:

场效应管与双极性晶体管的比较

1、场效应管是电压控制器件,栅极基本不取电流,而晶体管是电流控制器件,基极必须取一定的电流。因此,在信号源额定电流极小的情况,应选用场效应管。

2、场效应管是多子导电,而晶体管的两种载流子均参与导电。由于少子的浓度对温度、辐射等外界条件很敏感,因此,对于环境变化较大的场合,采用场效应管比较合适。

3、场效应管除了和晶体管一样可作为放大器件及可控开关外,还可作压控可变线性电阻使用。

4、场效应管的源极和漏极在结构上是对称的,可以互换使用,耗尽型MOS管的栅——源电压可正可负。因此,使用场效应管比晶体管灵活。

参考资料来源:百度百科-场效应管

数字万用表:把场效应管有字一面面向自己,管脚从左向右分别为G
D
S。
万用表用二极管挡。黑笔接S极
红笔碰一下G极。然后把红笔接D极会发现万用表有读数,则场效应管完好。
这种方法只适合n沟道场效应管。而P沟道场效应管则红笔和黑笔对就行了。
如没有万用表可以用直流电源测试,方法如下:
用8~12V一下直流电都可以,首先电源负极接S极,然后正极接12v的电灯泡。灯泡另一端接D极,然后用一导线接电源正极,用导线接触一下G极。此时场效管S
D极被触发导通,灯泡被点亮,如果用手同时接触G
D
S则S
D极被关断,灯泡熄灭。这可以认为场效应管是好的。

场效应管检测
G极(栅极)的判定:万用表用R×100档,分别测量场效应管每两脚间的阻值(正反向各测一次),应有一对脚阻值为数百欧姆(如均为大阻值,则用两表笔卡住两只脚,黑笔再点另一脚,如仍为高阻值,再将红笔点另一脚,总有一次出现有两脚低阻值的情况,如没有这种情况,管子应属已损坏)这时万用表两表笔所接的引脚是D极(漏极)和S极(源极),对其它脚均为阻值大的是G极(栅极)。
(漏极)、S极(源极)的判定:万用表置于R×10档,将红、黑表笔卡住要判断的D、S极上,分别测量两极间的正反向电阻值,在测得阻值为较大值时,用黑表笔与G极(栅极)接触一下,然后再恢复原状,在此过程中,红、黑笔应始终与原管脚相触,这时万用表的读数会出现两种情况:若读数由大变小,则万用表黑笔所接的管脚为D极(漏极),红表笔所接的管脚为S极(源极);若万用表读数没有明显变化,仍为较大值,这时就应把黑表笔与引脚保持接触,然后移动红表笔与G极(栅极)触碰一下。此时若阻值由大变小,则黑表笔所接的管脚为S极(源极),红表笔所接的管脚为D极(漏极)。类型的判定:确定D极(漏极)和S极(源极)后,如果万用表黑表笔所接为D极(漏极),红表笔所接为S极S极(源极),而且用黑表笔触发G(栅极)极,这时表明该场效应管为N沟道;如果黑表笔所接为S极(源极),红表笔所接为D极(漏极),且需用红表笔才能触发G极(栅极),则表明该场效应管为P沟道。
跨导大小的判别:对于N沟道的场效应管,用红表笔接S极(源极)黑表笔接D极(漏极),万用表读数应较大,这时若用100K电阻一端先按D极(漏极),再碰G极(栅极),万用表读数就会发生变化,变化越明显,说明该场效应管的跨导越大。
对于D沟道的场效应管,用黑表笔接S极(源极),红表笔接D极(漏极),方法同前。
有的人用手触碰G极(栅极)的方法来试亦可,但易造成击穿故障 有些大功率管,S极(源极)与D极(漏极)反向并有一只二极管,测试时应考虑这一情况。! 场效应管-晶体管的组合管,也可按这一方法测试

一、用指针式万用表对场效应管进行判别

(1)用测电阻法判别结型场效应管的电极

根据场效应管的PN结正、反向电阻值不一样的现象,可以判别出结型场效应管的三个电极。具体方法:将万用表拨在R×1k档上,任选两个电极,分别测出其正、反向电阻值。当某两个电极的正、反向电阻值相等,且为几千欧姆时,则该两个电极分别是漏极D和源极S。因为对结型场效应管而言,漏极和源极可互换,剩下的电极肯定是栅极G。也可以将万用表的黑表笔(红表笔也行)任意接触一个电极,另一只表笔依次去接触其余的两个电极,测其电阻值。当出现两次测得的电阻值近似相等时,则黑表笔所接触的电极为栅极,其余两电极分别为漏极和源极。若两次测出的电阻值均很大,说明是PN结的反向,即都是反向电阻,可以判定是N沟道场效应管,且黑表笔接的是栅极;若两次测出的电阻值均很小,说明是正向PN结,即是正向电阻,判定为P沟道场效应管,黑表笔接的也是栅极。若不出现上述情况,可以调换黑、红表笔按上述方法进行测试,直到判别出栅极为止。

(2)用测电阻法判别场效应管的好坏

测电阻法是用万用表测量场效应管的源极与漏极、栅极与源极、栅极与漏极、栅极G1与栅极G2之间的电阻值同场效应管手册标明的电阻值是否相符去判别管的好坏。具体方法:首先将万用表置于R×10或R×100档,测量源极S与漏极D之间的电阻,通常在几十欧到几千欧范围(在手册中可知,各种不同型号的管,其电阻值是各不相同的),如果测得阻值大于正常值,可能是由于内部接触不良;如果测得阻值是无穷大,可能是内部断极。然后把万用表置于R×10k档,再测栅极G1与G2之间、栅极与源极、栅极与漏极之间的电阻值,当测得其各项电阻值均为无穷大,则说明管是正常的;若测得上述各阻值太小或为通路,则说明管是坏的。要注意,若两个栅极在管内断极,可用元件代换法进行检测。

(3)用感应信号输人法估测场效应管的放大能力

具体方法:用万用表电阻的R×100档,红表笔接源极S,黑表笔接漏极D,给场效应管加上15V的电源电压,此时表针指示出的漏源极间的电阻值。然后用手捏住结型场效应管的栅极G,将人体的感应电压信号加到栅极上。这样,由于管的放大作用,漏源电压VDS和漏极电流Ib都要发生变化,也就是漏源极间电阻发生了变化,由此可以观察到表针有较大幅度的摆动。如果手捏栅极表针摆动较小,说明管的放大能力较差;表针摆动较大,表明管的放大能力大;若表针不动,说明管是坏的。

根据上述方法,我们用万用表的R×100档,测结型场效应管3DJ2F。先将管的G极开路,测得漏源电阻RDS为600Ω,用手捏住G极后,表针向左摆动,指示的电阻RDS为12kΩ,表针摆动的幅度较大,说明该管是好的,并有较大的放大能力。

运用这种方法时要说明几点:首先,在测试场效应管用手捏住栅极时,万用表针可能向右摆动(电阻值减小),也可能向左摆动(电阻值增加)。这是由于人体感应的交流电压较高,而不同的场效应管用电阻档测量时的工作点可能不同(或者工作在饱和区或者在不饱和区)所致,试验表明,多数管的RDS增大,即表针向左摆动;少数管的RDS减小,使表针向右摆动。但无论表针摆动方向如何,只要表针摆动幅度较大,就说明管有较大的放大能力。第二,此方法对MOS场效应管也适用。但要注意,MOS场效应管的输人电阻高,栅极G允许的感应电压不应过高,所以不要直接用手去捏栅极,必须用于握螺丝刀的绝缘柄,用金属杆去碰触栅极,以防止人体感应电荷直接加到栅极,引起栅极击穿。第三,每次测量完毕,应当G-S极间短路一下。这是因为G-S结电容上会充有少量电荷,建立起VGS电压,造成再进行测量时表针可能不动,只有将G-S极间电荷短路放掉才行。

(4)用测电阻法判别无标志的场效应管

首先用测量电阻的方法找出两个有电阻值的管脚,也就是源极S和漏极D,余下两个脚为第一栅极G1和第二栅极G2。把先用两表笔测的源极S与漏极D之间的电阻值记下来,对调表笔再测量一次,把其测得电阻值记下来,两次测得阻值较大的一次,黑表笔所接的电极为漏极D;红表笔所接的为源极S。用这种方法判别出来的S、D极,还可以用估测其管的放大能力的方法进行验证,即放大能力大的黑表笔所接的是D极;红表笔所接地是8极,两种方法检测结果均应一样。当确定了漏极D、源极S的位置后,按D、S的对应位置装人电路,一般G1、G2也会依次对准位置,这就确定了两个栅极G1、G2的位置,从而就确定了D、S、G1、G2管脚的顺序。

(5)用测反向电阻值的变化判断跨导的大小

对VMOS N沟道增强型场效应管测量跨导性能时,可用红表笔接源极S、黑表笔接漏极D,这就相当于在源、漏极之间加了一个反向电压。此时栅极是开路的,管的反向电阻值是很不稳定的。将万用表的欧姆档选在R×10kΩ的高阻档,此时表内电压较高。当用手接触栅极G时,会发现管的反向电阻值有明显地变化,其变化越大,说明管的跨导值越高;如果被测管的跨导很小,用此法测时,反向阻值变化不大。

二、场效应管的使用注意事项

(1)为了安全使用场效应管,在线路的设计中不能超过管的耗散功率,最大漏源电压、最大栅源电压和最大电流等参数的极限值。

(2)各类型场效应管在使用时,都要严格按要求的偏置接人电路中,要遵守场效应管偏置的极性。如结型场效应管栅源漏之间是PN结,N沟道管栅极不能加正偏压;P沟道管栅极不能加负偏压,等等。

(3)MOS场效应管由于输人阻抗极高,所以在运输、贮藏中必须将引出脚短路,要用金属屏蔽包装,以防止外来感应电势将栅极击穿。尤其要注意,不能将MOS场效应管放人塑料盒子内,保存时最好放在金属盒内,同时也要注意管的防潮。

(4)为了防止场效应管栅极感应击穿,要求一切测试仪器、工作台、电烙铁、线路本身都必须有良好的接地;管脚在焊接时,先焊源极;在连入电路之前,管的全部引线端保持互相短接状态,焊接完后才把短接材料去掉;从元器件架上取下管时,应以适当的方式确保人体接地如采用接地环等;当然,如果能采用先进的气热型电烙铁,焊接场效应管是比较方便的,并且确保安全;在未关断电源时,绝对不可以把管插人电路或从电路中拔出。以上安全措施在使用场效应管时必须注意。

(5)在安装场效应管时,注意安装的位置要尽量避免靠近发热元件;为了防管件振动,有必要将管壳体紧固起来;管脚引线在弯曲时,应当大于根部尺寸5毫米处进行,以防止弯断管脚和引起漏气等。

对于功率型场效应管,要有良好的散热条件。因为功率型场效应管在高负荷条件下运用,必须设计足够的散热器,确保壳体温度不超过额定值,使器件长期稳定可靠地工作。

总之,确保场效应管安全使用,要注意的事项是多种多样,采取的安全措施也是各种各样,广大的专业技术人员,特别是广大的电子爱好者,都要根据自己的实际情况出发,采取切实可行的办法,安全有效地用好场效应管。

三VMOS场效应管

VMOS场效应管(VMOSFET)简称VMOS管或功率场效应管,其全称为V型槽MOS场效应管。它是继MOSFET之后新发展起来的高效、功率开关器件。它不仅继承了MOS场效应管输入阻抗高(≥108W)、驱动电流小(01μA左右),还具有耐压高(最高1200V)、工作电流大(15A~100A)、输出功率高(1~250W)、跨导的线性好、开关速度快等优良特性。正是由于它将电子管与功率晶体管之优点集于一身,因此在电压放大器(电压放大倍数可达数千倍)、功率放大器、开关电源和逆变器中正获得广泛应用。

VMOS场效应功率管具有极高的输入阻抗及较大的线性放大区等优点,尤其是其具有负的电流温度系数,即在栅-源电压不变的情况下,导通电流会随管温升高而减小,故不存在由于“二次击穿”现象所引起的管子损坏现象。因此,VMOS管的并联得到广泛应用。

众所周知,传统的MOS场效应管的栅极、源极和漏极大大致处于同一水平面的芯片上,其工作电流基本上是沿水平方向流动。VMOS管则不同,从图1上可以看出其两大结构特点:第一,金属栅极采用V型槽结构;第二,具有垂直导电性。由于漏极是从芯片的背面引出,所以ID不是沿芯片水平流动,而是自重掺杂N+区(源极S)出发,经过P沟道流入轻掺杂N-漂移区,最后垂直向下到达漏极D。电流方向如图中箭头所示,因为流通截面积增大,所以能通过大电流。由于在栅极与芯片之间有二氧化硅绝缘层,因此它仍属于绝缘栅型MOS场效应管。

国内生产VMOS场效应管的主要厂家有877厂、天津半导体器件四厂、杭州电子管厂等,典型产品有VN401、VN672、VMPT2等。

下面介绍检测VMOS管的方法。

1.判定栅极G

将万用表拨至R×1k档分别测量三个管脚之间的电阻。若发现某脚与其字两脚的电阻均呈无穷大,并且交换表笔后仍为无穷大,则证明此脚为G极,因为它和另外两个管脚是绝缘的。

2.判定源极S、漏极D

由图1可见,在源-漏之间有一个PN结,因此根据PN结正、反向电阻存在差异,可识别S极与D极。用交换表笔法测两次电阻,其中电阻值较低(一般为几千欧至十几千欧)的一次为正向电阻,此时黑表笔的是S极,红表笔接D极。

3.测量漏-源通态电阻RDS(on)

将G-S极短路,选择万用表的R×1档,黑表笔接S极,红表笔接D极,阻值应为几欧至十几欧。

由于测试条件不同,测出的RDS(on)值比手册中给出的典型值要高一些。例如用500型万用表R×1档实测一只IRFPC50型VMOS管,RDS(on)=32W,大于058W(典型值)。

4.检查跨导

将万用表置于R×1k(或R×100)档,红表笔接S极,黑表笔接D极,手持螺丝刀去碰触栅极,表针应有明显偏转,偏转愈大,管子的跨导愈高。

注意事项:

(1)VMOS管亦分N沟道管与P沟道管,但绝大多数产品属于N沟道管。对于P沟道管,测量时应交换表笔的位置。

(2)有少数VMOS管在G-S之间并有保护二极管,本检测方法中的1、2项不再适用。

(3)目前市场上还有一种VMOS管功率模块,专供交流电机调速器、逆变器使用。例如美国IR公司生产的IRFT001型模块,内部有N沟道、P沟道管各三只,构成三相桥式结构。

(4)现在市售VNF系列(N沟道)产品,是美国Supertex公司生产的超高频功率场效应管,其最高工作频率fp=120MHz,IDSM=1A,PDM=30W,共源小信号低频跨导gm=2000μS。适用于高速开关电路和广播、通信设备中。

(5)使用VMOS管时必须加合适的散热器后。以VNF306为例,该管子加装140×140×4(mm)的散热器后,最大功率才能达到30W。

(6)多管并联后,由于极间电容和分布电容相应增加,使放大器的高频特性变坏,通过反馈容易引起放大器的高频寄生振荡。为此,并联复合管管子一般不超过4个,而且在每管基极或栅极上串接防寄生振荡电阻。

更多请关注LP3401LT1G:>

1、场效应管的检测方法:把数字万用表打到二极管档,用两表笔任意触碰场效应管的三只引脚,好的场效应管在量测的时候只应有一次有读数,而且数值在300--800左右,

2、如果在最终测量结果中测的只有一次有读数,并且为0时须万用表短接场效应管的引脚,

3、重新测量一次,若又测得一组为300--800左右读数时此管也为好管。

4、将万用表开到二极管档,用万用表的两个表笔量测D、S极和G、S极,看看两极之间的读数是不是很小,如果这个值在50以下,则可以判断为这个效应管已经被击穿

场效应管(Field Effect Transistor)又称场效应晶体管,是利用控制输入回路的电场效应来控制输出回路电流的一种半导体器件。由多数载流子参与导电,也称为单极型晶体管,[1]它属于电压控制型半导体器件。主要有两种类型(junction FET—JFET)和金属 - 氧化物半导体场效应管(metal-oxide semiconductor FET,简称MOS-FET)。

场效应管具有输入电阻高(10 7~10 15Ω)、噪声小、功耗低、动态范围大、易于集成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极型晶体管和 功率晶体管的强大竞争者。

与 双极型晶体管相比,场效应管具有如下特点。

(1)场效应管是电压控制 器件,它通过V GS(栅源电压)来控制I D(漏极电流);

(2)场效应管的控制输入端 电流极小,因此它的 输入电阻(10 7~10 12Ω)很大。

(3)它是利用多数 载流子导电,因此它的 温度稳定性较好;

(4)它组成的 放大电路的电压放大 系数要小于三极管组成放大电路的 电压放大系数;

(5)场效应管的抗 辐射能力强;

(6)由于它不存在杂乱 运动的电子扩散引起的 散粒噪声,所以噪声低。

场效应管工作原理用一句话说,就是“漏极-源极间流经沟道的ID,用以栅极与沟道间的pn结形成的反偏的栅极电压控制ID”。更正确地说,ID流经通路的宽度,即沟道截面积,它是由pn结反偏的变化,产生耗尽层扩展变化控制的缘故。在VGS=0的非饱和区域,表示的过渡层的扩展因为不很大,根据漏极-源极间所加VDS的 电场,源极区域的某些电子被漏极拉去,即从漏极向源极有电流ID流动。从门极向漏极扩展的过度层将沟道的一部分构成堵塞型,ID饱和。将这种状态称为夹断。这意味着过渡层将沟道的一部分阻挡,并不是电流被切断。

在过渡层由于没有 电子、空穴的自由移动,在 理想状态下几乎具有绝缘特性,通常电流也难流动。但是此时漏极-源极间的电场,实际上是两个过渡层接触漏极与门极下部附近,由于漂移电场拉去的高速电子通过过渡层。因漂移电场的 强度几乎不变产生ID的饱和现象。其次,VGS向负的方向变化,让VGS=VGS(off),此时过渡层大致成为覆盖全区域的状态。而且VDS的电场大部分加到过渡层上,将电子拉向漂移方向的电场,只有靠近源极的很短部分,这更使电流不能流通。

MOS 场效应管电源开关电路

MOS场效应管也被称为金属氧化物半导体场效应管(MetalOxideSemiconductor FieldEffect Transistor,MOSFET)。它一般有耗尽型和增强型两种。增强型MOS场效应管可分为NPN型PNP型。NPN型通常称为N沟道型,PNP型也叫P沟道型。对于N沟道的场效应管其源极和漏极接在N型半导体上,同样对于P沟道的场效应管其源极和漏极则接在P型半导体上。场效应管的输出电流是由输入的电压(或称电场)控制,可以认为输入电流极小或没有输入电流,这使得该器件有很高的输入阻抗,同时这也是我们称之为场效应管的原因。

场效应管在二极管加上正向电压(P端接正极,N端接负极)时,二极管导通,其PN结有电流通过。这是因为在P型半导体端为正电压时,N型半导体内的负电子被吸引而涌向加有正电压的P型半导体端,而P型半导体端内的正电子则朝N型半导体端运动,从而形成导通电流。同理,当二极管加上反向电压(P端接负极,N端接正极)时,这时在P型半导体端为负电压,正电子被聚集在P型半导体端,负电子则聚集在N型半导体端,电子不移动,其PN结没有电流通过,二极管截止。在栅极没有电压时,由前面分析可知,在源极与漏极之间不会有电流流过,此时场效应管处与截止状态(图7a)。当有一个正电压加在N沟道的MOS场效应管栅极上时,由于电场的作用,此时N型半导体的源极和漏极的负电子被吸引出来而涌向栅极,但由于氧化膜的阻挡,使得电子聚集在两个N沟道之间的P型半导体中(见图7b),从而形成电流,使源极和漏极之间导通。可以想像为两个N型半导体之间为一条沟,栅极电压的建立相当于为它们之间搭了一座桥梁,该桥的大小由栅压的大小决定。

C-MOS 场效应管(增强型 MOS 场效应管)

电路将一个增强型P沟道MOS场效应管和一个增强型N沟道MOS场效应管组合在一起使用。当输入端为低电平时,P沟道MOS场效应管导通,输出端与电源正极接通。当输入端为高电平时,N沟道MOS场效应管导通,输出端与电源地接通。在该电路中,P沟道MOS场效应管和N沟道MOS场效应管总是在相反的状态下工作,其相位输入端和输出端相反。通过这种工作方式我们可以获得较大的电流输出。同时由于漏电流的影响,使得栅压在还没有到0V,通常在栅极电压小于1到2V时,MOS场效应管既被关断。不同场效应管其关断电压略有不同。也正因为如此,使得该电路不会因为两管同时导通而造成电源短路。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/10234300.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存