This time,you are supposed to find A+B where A and B are two polynomials.
input Specification:Each input file contains one test case. Each case occupIEs 2 lines,and each line contains the information of a polynomial:
K N?1?? a?N?1???? N?2?? a?N?2???? ... N?K?? a?N?K????
where K is the number of nonzero terms in the polynomial, N?i?? and a?N?i???? (,) are the exponents and coefficIEnts,respectively. It is given that 1,0.
Output Specification:For each test case you should output the sum of A and B in one line,with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.
Sample input:2 1 2.4 0 3.22 2 1.5 1 0.5@H_219_419@Sample Output:
3 2 1.5 1 2.9 0 3.2
#include <bits/stdc++.h>using namespace std;struct Node{ double ce; int ex;}n1[100],n2[100],n3[100],n4[100];bool cmp(Node a,Node b){ return a.ex>b.ex;} int vis[100];int main(){ int k1,k2; scanf("%d",&k1); for(int j =0;j<k1;j++){ scanf("%d%lf",&n1[j].ex,&n1[j].ce); } scanf("%d",&k2); for(int j =0;j<k2;j++){ scanf("%d%lf",&n2[j].ex,&n2[j].ce); } int cnt = 0; int flag ; for(int j=0;j<k1;j++){ int x=n1[j].ex; flag = 0; for(int k =0;k<k2;k++){ if(x==n2[k].ex){ n3[cnt].ex=x; n3[cnt++].ce=n1[j].ce+n2[k].ce; vis[x]=1; flag =1; break; } } if(!flag){ n3[cnt].ex=x; n3[cnt++].ce=n1[j].ce; } } for(int i =0;i<k2;i++){ int x = n2[i].ex; if(!vis[x]){ n3[cnt].ex=x; n3[cnt++].ce=n2[i].ce; } } sort(n3,n3+cnt,cmp); int cnt1=0; for(int i=0;i<cnt;i++){ if(n3[i].ce!=0){ n4[cnt1].ex=n3[i].ex; n4[cnt1++].ce=n3[i].ce; } } if(cnt1!=0){ printf("%d ",cnt1); for(int i =0;i<cnt1;i++){ printf("%d %.1f%c",n4[i].ex,n4[i].ce,i==cnt1-1?‘\n‘:‘ ‘); } } else{ printf("0\n"); } return 0; }总结
以上是内存溢出为你收集整理的多项式求和全部内容,希望文章能够帮你解决多项式求和所遇到的程序开发问题。
如果觉得内存溢出网站内容还不错,欢迎将内存溢出网站推荐给程序员好友。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)