所谓方向向量,就是
“一个用来表示几何图形方向的向量”。
如,用一个向量可表示直线的斜率,这个向量就是方向向量。
例如:直线y=2x+1的方向向量就可以是(1,2)或(2,4)或(-1,-2)……
还可用一个向量表示曲线在某点的切线方向,这个向量也是方向向量。
运用方向向量,可以简化某些问题。方向向量是反应直线与x轴的相交程度;方向向量有无数个;成对出现,如长度为2,的有两个
长度为25的同样有两个、这两个就是互为相反 向量;
而长度为1的方向向量称为单位方向向量 ;
单位方向向量有专用符号:
e;
方向向量的采集:
在直线上任意取两个不同的点,A,B
向量AB=(x2-x1,y2-y1)
e=AB/|AB|(自己除以自己的长度就是单位向量)
希望对你能有所帮助。
空间直线点向式方程的形式为(和对称式相同) (x-x0)/l=(y-y0)/m=(z-z0)/n,其方向向量就是 (l,m,n)或反向量(-l,-m,-n)。
比如直线{ x+2y-z=7-2x+y+z=7
(1)先求一个交点,将z随便取值解出x和y不妨令z=0由x+2y=7-2x+y=7解得x=-7/5,y=21/5所以(-7/5,21/5,0)为直线上一点
(2)求方向向量因为两已知平面的法向量为(1,2,-1),(-2,1,1),所求直线的方向向量垂直于2个法向量。由外积可求方向向量=(1,2,-1)×(-2,1,1)=i j k1 2 -1-2 1 1=3i+j+5k所以直线方向向量为(3,1,5)
扩展资料:
在数学中,向量(也称为欧几里得向量、几何向量、矢量),指具有大小(magnitude)和方向的量。它可以形象化地表示为带箭头的线段。箭头所指:代表向量的方向;线段长度:代表向量的大小。与向量对应的只有大小,没有方向的量叫做数量(物理学中称标量)。
向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。 如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。
在物理学和工程学中,几何向量更常被称为矢量。许多物理量都是矢量,比如一个物体的位移,球撞向墙而对其施加的力等等。与之相对的是标量,即只有大小而没有方向的量。一些与向量有关的定义亦与物理概念有密切的联系,例如向量势对应于物理中的势能。
参考资料:
单位向量是指模等于1的向量。由于是非零向量,单位向量具有确定的方向。一个非零向量除以它的模,可得所需单位向量。
单位向量是指模等于1的向量。由于是非零向量,单位向量具有确定的方向。单位向量有无数个。
一个非零向量除以它的模,可得所需单位向量。一个单位向量的平面直角坐标系上的坐标表示可以是:(n,k) ,则有n²+k²=1。
特殊情况:
一个向量在另一个向量方向上的投影是一个数量。当θ为锐角时,它是正值;当θ为直角时,它是0;当θ为钝角时,它是负值;当θ=0°时,它等于|b|;当θ=180°时,它等于-|b|。
设单位向量e是直线m的方向向量,向量AB=a,作点A在直线m上的射影A',作点B在直线m上的射影B',则向量A'B'叫做AB在直线m上或在向量e方向上的正射影,简称射影。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)