统计学假设检验中,p值怎么计算

统计学假设检验中,p值怎么计算,第1张

p值的计算公式:
=2[1-φ(z0)]
当被测假设h1为
p不等于p0时;
=1-φ(z0)
当被测假设h1为
p大于p0时;
=φ(z0)
当被测假设h1为
p小于p0时;
其中,φ(z0)要查表得到。
z0=(x-np0)/(根号下(np0(1-p0)))
最后,当p值小于某个显著参数的时候我们就可以否定假设。反之,则不能否定假设。
注意,这里p0是那个缺少的假设满意度,而不是要求的p值。
没有p0就形不成假设检验,也就不存在p值
统计学上规定的p值意义:
p值
碰巧的概率
对无效假设
统计意义
p>005
碰巧出现的可能性大于5%
不能否定无效假设
两组差别无显著意义
p<005
碰巧出现的可能性小于5%
可以否定无效假设
两组差别有显著意义
p
<001
碰巧出现的可能性小于1%
可以否定无效假设
两者差别有非常显著意义

假设检验是推断统计中的一项重要内容。
用SAS、SPSS等专业统计软件进行假设检验,在假设检验中常见到P 值方法( P-Value,Probability,Pr),这是由于它更容易应用于计算机软件中。
统计学根据显著性检验方法所得到的P 值,一般以P < 005 为显著, P <001 为非常显著,其含义是样本间的差异由抽样误差所致的概率小于005 或001。
实际上,P 值不能赋予数据任何重要性,只能说明某事件发生的机率。P < 001 时样本间的差异比P < 005 时更大,这种说法是错误的。
统计结果中显示Pr > F,也可写成Pr( >F),P = P{ F005 > F}或P = P{ F001 > F}。
下面的内容列出了P值计算方法。
(1) P值是:
1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。
2) 拒绝原假设的最小显著性水平。
3) 观察到的(实例的) 显著性水平。
4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。
5)注意:p值不是给定样本结果时原假设为真的概率,而是给定原假设为真时样本结果出现的概率。
(2) P 值的计算:
一般地,用X 表示检验的统计量,当H0 为真时,可由样本数据计算出该统计量的值C ,根据检验统计量X 的具体分布,可求出P 值。具体地说:
左侧检验的P 值为检验统计量X 小于样本统计值C 的概率,即: P = P{ X < C}
右侧检验的P 值为检验统计量X 大于样本统计值C 的概率: P = P{ X > C}
双侧检验的P 值为检验统计量X 落在样本统计值C 为端点的尾部区域内的概率的2 倍: P = 2P{ X > C} (当C 位于分布曲线的右端时) 或P = 2P{ X< C} (当C 位于分布曲线的左端时) 。若X 服从正态分布和t 分布,其分布曲线是关于纵轴对称的,故其P 值可表示为P = P{| X| > C} 。
计算出P 值后,将给定的显著性水平α与P 值比较,就可作出检验的结论:
如果α > P 值,则在显著性水平α下拒绝原假设。
如果α ≤ P 值,则在显著性水平α下接受原假设。
在实践中,当α = P 值时,也即统计量的值C 刚好等于临界值,为慎重起见,可增加样本容量,重新进行抽样检验。

一、P值计算方法

左侧检验P值是当时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值。

右侧检验P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值。

双侧检验P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值。

二、P值的意义

P 值即概率,反映某一事件发生的可能性大小。统计学根据显著性检验方法所得到的P 值,一般以P < 005 为显著, P <001 为非常显著,其含义是样本间的差异由抽样误差所致的概率小于005 或001。

扩展资料:

数据分析是指用适当的统计分析方法对收集来的大量数据进行分析,提取有用信息和形成结论而对数据加以详细研究和概括总结的过程。这一过程也是质量管理体系的支持过程。在实用中,数据分析可帮助人们作出判断,以便采取适当行动。

数据分析的数学基础在20世纪早期就已确立,但直到计算机的出现才使得实际 *** 作成为可能,并使得数据分析得以推广。数据分析是数学与计算机科学相结合的产物。

在统计学领域,有些人将数据分析划分为描述性统计分析、探索性数据分析以及验证性数据分析;其中,探索性数据分析侧重于在数据之中发现新的特征,而验证性数据分析则侧重于已有假设的证实或证伪。

参考资料:

假设检验中的P值_百度百科

统计学意义(p值)ZT
结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=005提示样本中变量关联有5%的可能是由于偶然性造成的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研究领域,005的p值通常被认为是可接受错误的边界水平。
在最后结论中判断什么样的显著性水平具有统计学意义,不可避免地带有武断性。换句话说,认为结果无效而被拒绝接受的水平的选择具有武断性。实践中,最后的决定通常依赖于数据集比较和分析过程中结果是先验性还是仅仅为均数之间的两两>比较,依赖于总体数据集里结论一致的支持性证据的数量,依赖于以往该研究领域的惯例。通常,许多的科学领域中产生p值的结果≤005被认为是统计学意义的边界线,但是这显著性水平还包含了相当高的犯错可能性。结果005≥p>001被认为是具有统计学意义,而001≥p≥0001被认为具有高度统计学意义。但要注意这种分类仅仅是研究基础上非正规的判断常规。
所有的检验统计都是正态分布的吗并不完全如此,但大多数检验都直接或间接与之有关,可以从正态分布中推导出来,如t检验、f检验或卡方检验。这些检验一般都要求:所分析变量在总体中呈正态分布,即满足所谓的正态假设。许多观察变量的确是呈正态分布的,这也是正态分布是现实世界的基本特征的原因。当人们用在正态分布基础上建立的检验分析非正态分布变量的数据时问题就产生了,(参阅非参数和方差分析的正态性检验)。这种条件下有两种方法:一是用替代的非参数检验(即无分布性检验),但这种方法不方便,因为从它所提供的结论形式看,这种方法统计效率低下、不灵活。另一种方法是:当确定样本量足够大的情况下,通常还是可以使用基于正态分布前提下的检验。后一种方法是基于一个相当重要的原则产生的,该原则对正态方程基础上的总体检验有极其重要的作用。即,随着样本量的增加,样本分布形状趋于正态,即使所研究的变量分布并不呈正态。

P值是用来判定假设检验结果的一个参数,也可以根据不同的分布使用分布的拒绝域进行比较。由R·A·Fisher首先提出。

计算方法

为理解P值的计算过程,用Z表示检验的统计量,ZC表示根据样本数据计算得到的检验统计量值。

左侧检验

P值是当

时,检验统计量小于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值

右侧检验

P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值

双侧检验

P值是当μ=μ0时,检验统计量大于或等于根据实际观测样本数据计算得到的检验统计量值的概率,即p值

扩展资料:

从研究总体中抽取一个随机样本计算检验统计量的值计算概率P值或者说观测的显著水平,即在假设为真时的前提下,检验统计量大于或等于实际观测值的概率。

如果P<001,说明是较强的判定结果,拒绝假定的参数取值。

如果001<P值<005,说明较弱的判定结果,拒绝假定的参数取值。

如果P值>005,说明结果更倾向于接受假定的参数取值。

可是,那个年代,由于硬件的问题,计算P值并非易事,人们就采用了统计量检验方法,也就是我们最初学的t值和t临界值比较的方法。

统计检验法是在检验之前确定显著性水平α,也就是说事先确定了拒绝域。但是,如果选中相同的 ,所有检验结论的可靠性都一样,无法给出观测数据与原假设之间不一致程度的精确度量。

只要统计量落在拒绝域,假设的结果都是一样,即结果显著。但实际上,统计量落在拒绝域不同的地方,实际上的显著性有较大的差异。

因此,随着计算机的发展,P值的计算不再是个难题,使得P值变成最常用的统计指标之一。

参考资料:

百度百科-P值


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/10498766.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存