卷积:通过两个函数f 和g 生成第三个函数的一种数学算子,表征函数f 与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。
前馈神经网络:各神经元分层排列,每个神经元只与前一层的神经元相连,接收前一层的输出,并输出给下一层.各层间没有反馈。
卷积神经网络:是一类包含卷积计算且具有深度结构的前馈神经网络
卷积核:就是图像处理时,给定输入图像,输入图像中一个小区域中像素加权平均后成为输出图像中的每个对应像素,其中权值由一个函数定义,这个函数称为卷积核。
下采样:对于一个样值序列间隔几个样值取样一次,这样得到新序列就是原序列的下采样。
结构介绍
输入层:用于数据输入
卷积层:利用卷积核进行特征提取和特征映射
激励层:非线性映射,卷积是线性映射,弥补不足
池化层:进行下采样,对特征图稀疏处理,减少数据运算量
全连接层:在CNN的尾部进行重新拟合,减少特征信息的损失
输入层:
在CNN的输入层中,(图片)数据输入的格式 与 全连接神经网络的输入格式(一维向量)不太一样。CNN的输入层的输入格式保留了图片本身的结构。
对于黑白的 28×28 的图片,CNN的输入是一个 28×28 的的二维神经元:
而对于RGB格式的28×28图片,CNN的输入则是一个 3×28×28 的三维神经元(RGB中的每一个颜色通道都有一个 28×28 的矩阵)
卷积层:
左边是输入,中间部分是两个不同的滤波器Filter w0、Filter w1,最右边则是两个不同的输出。
ai.j=f(∑m=02∑n=02wm,nxi+m,j+n+wb)
wm,n:filter的第m行第n列的值
xi,j: 表示图像的第i行第j列元素
wb:用表示filter的偏置项
ai,j:表示Feature Map的第i行第j列元素
f:表示Relu激活函数
激励层:
使用的激励函数一般为ReLu函数:
f(x)=max(x,0)
卷积层和激励层通常合并在一起称为“卷积层”。
池化层:
当输入经过卷积层时,若感受视野比较小,布长stride比较小,得到的feature map (特征图)还是比较大,可以通过池化层来对每一个 feature map 进行降维 *** 作,输出的深度还是不变的,依然为 feature map 的个数。
池化层也有一个“池化视野(filter)”来对feature map矩阵进行扫描,对“池化视野”中的矩阵值进行计算,一般有两种计算方式:
Max pooling:取“池化视野”矩阵中的最大值
Average pooling:取“池化视野”矩阵中的平均值
训练过程:
1.前向计算每个神经元的输出值aj( 表示网络的第j个神经元,以下同);
2.反向计算每个神经元的误差项σj,σj在有的文献中也叫做敏感度(sensitivity)。它实际上是网络的损失函数Ed对神经元加权输入的偏导数
3.计算每个神经元连接权重wi,j的梯度( wi,j表示从神经元i连接到神经元j的权重)
1.最后,根据梯度下降法则更新每个权重即可。
参考: https://blog.csdn.net/love__live1/article/details/79481052
不管何种模型,其损失函数(Loss Function)选择,将影响到训练结果质量,是机器学习模型设计的重要部分。对于判别模型,损失函数是容易定义的,因为输出的目标相对简单。但对于生成模型,损失函数却是不容易定义的。GAN算法原理:
1)G是一个生成图片的网络,它接收一个随机的噪声z,通过这个噪声生成图片,记做G(z)。
3)在最理想的状态下,G可以生成足以“以假乱真”的图片G(z)。对于D来说,它难以判定G生成的图片究竟是不是真实的,因此D(G(z)) = 0.5。
4)这样目的就达成了:得到了一个生成式的模型G,它可以用来生成图片。
在训练过程中,生成网络G的目标就是尽量生成真实的图片去欺骗判别网络D。而判别网络D的目标就是尽量把G生成的图片和真实的图片分别开来。这样,G和D构成了一个动态的“博弈过程”。
2.再以理论抽象进行说明:
GAN是一种通过对抗过程估计生成模型的新框架。框架中同时训练两个模型:捕获数据分布的生成模型G,和估计样本来自训练数据的概率的判别模型D。G的训练程序是将D错误的概率最大化。可以证明在任意函数G和D的空间中,存在唯一的解决方案,使得G重现训练数据分布,而D=0.5(D判断不出真假,50%概率,跟抛硬币决定一样)。在G和D由多层感知器定义的情况下,整个系统可以用反向传播进行训练。在训练或生成样本期间,不需要任何马尔科夫链或展开的近似推理网络。实验通过对生成的样品的定性和定量评估,证明了GAN框架的潜在优势。
Goodfellow从理论上证明了该算法的收敛性。在模型收敛时,生成数据和真实数据具有相同分布,从而保证了模型效果。
GAN公式形式如下:
1)公式中x表示真实图片,z表示输入G网络的噪声,G(z)表示G网络生成的图片;
2)D(x)表示D网络判断图片是否真实的概率,因为x就是真实的,所以对于D来说,这个值越接近1越好。
3)G的目的:D(G(z))是D网络判断G生成的图片的是否真实的概率。G应该希望自己生成的图片“越接近真实越好”。也就是说,G希望D(G(z))尽可能得大,这时V(D, G)会变小。因此公式的最前面记号是min_G。
4)D的目的:D的能力越强,D(x)应该越大,D(G(x))应该越小。这时V(D,G)会变大。因此式子对于D来说是求最大max_D。
GAN训练过程:
GAN通过随机梯度下降法来训练D和G。
1)首先训练D,D希望V(G, D)越大越好,所以是加上梯度(ascending)
2)然后训练G时,G希望V(G, D)越小越好,所以是减去梯度(descending);
GAN训练具体过程如下:
GAN算法优点:
1)使用了latent code,用以表达latent dimension、控制数据隐含关系等;
2)数据会逐渐统一;
3)不需要马尔可夫链;
4)被认为可以生成最好的样本(不过没法鉴定“好”与“不好”);
5)只有反向传播被用来获得梯度,学习期间不需要推理;
6)各种各样的功能可以被纳入到模型中;
7)可以表示非常尖锐,甚至退化的分布。
GAN算法缺点:
1)Pg(x)没有显式表示;
2)D在训练过程中必须与G同步良好;
3)G不能被训练太多;
4)波兹曼机必须在学习步骤之间保持最新。
GAN的应用范围较广,扩展性也强,可应用于图像生成、数据增强和图像处理等领域。
1)图像生成:
目前GAN最常使用的地方就是图像生成,如超分辨率任务,语义分割等。
2)数据增强:
用GAN生成的图像来做数据增强。主要解决的问题是a)对于小数据集,数据量不足,可以生成一些数据;b)用原始数据训练一个GAN,GAN生成的数据label不同类别。
GAN生成式对抗网络是一种深度学习模型,是近年来复杂分布上无监督学习最具有前景的方法之一,值得深入研究。GAN生成式对抗网络的模型至少包括两个模块:G模型-生成模型和D模型-判别模型。两者互相博弈学习产生相当好的输出结果。GAN算法应用范围较广,扩展性也强,可应用于图像生成、数据增强和图像处理等领域。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)