每个batch的任务调度执行的时候,某些excutor上调度的任务特别多,其他的excutor上只调度一个
甚至200个task只会调度到2个excutor上:
第二个图上看到下面所有的Locality Level 都为: NODE_LOCAL
第一个图上的调度很多的task也是NODE_LOCAL
所以可能原因:是spark调度策略的问题
spark 是计算追着数据走, storm 是数据追着计算走, 所以如果数据量比较小,要求延迟比较小, 就适合storm, 但是如果数据量比较大, 这个时候如果传输数据, 就会碰到很大的带宽占用和性能下降, 这个时候就比较适合让计算去找数据,
但是在计算找数据的过程中, 是怎么让计算找到数据呢,就是靠 spark 的计算本地性来决定
spark.locality系列参数,可以调节Spark等待task进行数据本地化的时间。spark.locality.wait(默认3s)、spark.locality.wait.node、spark.locality.wait.process、spark.locality.wait.rack,默认值是spark.locality.wait的值;
本地性从优到差排, PROCESS_LOCAL >NODE_LOCAL >NO_PREF >RACK_LOCAL;
就是总是尝试以最高的 locality level 去启动task, 如果对应需要是用到的 executor 正在使用中(跑别的task),满足不了, 就等一会(等待时间是有spark.locality.wait.process或spark.locality.wait.node或spark.locality.wait.rack来控制的), 看看过一会这个忙线的host 或者 executor是不是解脱了, 如果已经空闲了,我就可以把 task 放在它最期望的 host 或者 executor 上去运行了, 这里赌的就是一般来说,task 执行耗时相对于网络传输/文件IO 要小得多,调度器多等待1 2秒可能就可以以更好的本地性执行 task,避免了更耗时的网络传输或文件IO
举个例子, 假如 一个 task 要处理的数据,在上一个 stage 中缓存下来了, 这个 task 期望的 就是以 PROCESS_LOCAL 来运行, 这个时候缓存数据的executor 不巧正在执行 其他的task, 那么我就等一会, 等多长时间呢, spark.locality.wait.process这么长时间, 如果时间超了, executor 还是没有空闲下来, 那么我没有办法, 我就以NODE_LOCAL 来运行 task, 这个时候我想到 同一台机器上其他 executor 上跨jvm 去拉取数据, 如果同一台机器上有其他空闲的 executor 可以满足, 就这么干, 如果没有, 等待 spark.locality.wait.node 时间, 还没有就以更低的 Locality Level 去执行这个 task
三个分别是局部的等待时间是可以根据实际情况调整:node、process、rack可以设置时间越来越短,rack可以设置为1s
这种调度原则通常是没有问题,在做实时任务的某些时候可能就会有问题;
由于kafka数据过滤后每个分区都比较小,默认的3s可能大部分都可以处理完,所以造成一直在延迟等待调度到NODE_LOCAL的节点上跑任务,经设小spark.locality.wait值问题得到解决
前面我们演示了如何使用集群跑一个Spark任务,比如WordCount程序。那么一个Spark任务在集群中到底是如何调度的呢?本节就来详细讨论一下Spark任务在集群中的调度过程。
Spark任务在集群中的调度过程如下图所示:
关于Spark任务在执行过程中的几点说明:
更多关于RDD、Partition、依赖关系、Stage、DAG的内容,我们将在后续章节进行深入的讨论。本节先介绍到这里。
spark默认调度模式:
Spark中的调度模式主要有两种:FIFO和FAIR。默认情况下Spark的调度模式是FIFO(先进先出),谁先提交谁先执行,后面的任务需要等待前面的任务执行。
而FAIR(公平调度)模式支持在调度池中为任务进行分组,不同的调度池权重不同,任务可以按照权重来决定执行顺序。使用哪种调度器由参数spark。scheduler。mode来设置,可选的参数有FAIR和FIFO,默认是FIFO。
含义
Spark默认采取FIFO策略运行多个Jobs,它提供一个队列来保存已经提交的Jobs,如果队头的Job不需要占用所有的集群资源,那么后续的 Job可以立即运行,但是如果队头的Job需要占用所有的集群资源,且运行时间很长,那么即使后续的Job很小,也要等待前面的Job执行完后才可以执 行,这样就造成了大量的延迟。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)