每个Pod都是运行应用的单个实例,如果需要水平扩展应用(例如,运行多个实例),则应该使用多个Pods,每个实例一个Pod。在Kubernetes中,这样通常称为Replication。Replication的Pod通常由Controller创建和管理。
Pod可以被理解成一群可以共享网络、存储和计算资源的容器化服务的集合。再打个形象的比喻,在同一个Pod里的几个Docker服务/程序,好像被部署在同一台机器上,可以通过localhost互相访问,并且可以共用Pod里的存储资源(这里是指Docker可以挂载Pod内的数据卷,数据卷的概念,后文会详细讲述,暂时理解为“需要手动mount的磁盘”)。笔者总结Pod如下图,可以看到:同一个Pod之间的Container可以通过localhost互相访问,并且可以挂载Pod内所有的数据卷;但是不同的Pod之间的Container不能用localhost访问,也不能挂载其他Pod的数据卷。
1.1、为什么需要pod
我们先谈谈为什么k8s会使用pod这个最小单元,而不是使用docker的容器,k8s既然使用了pod,当然有它的理由。
1、更利于扩展
k8s不仅仅支持Docker容器,也支持rkt甚至用户自定义容器,为什么会有这么多不同的容器呢,因为容器并不是真正的虚拟机,docker的一些概念和误区总结,此外,Kubernetes不依赖于底层某一种具体的规则去实现容器技术,而是通过CRI这个抽象层 *** 作容器,这样就会需要pod这样一个东西,pod内部再管理多个业务上紧密相关的用户业务容器,就会更有利用业务扩展pod而不是扩展容器。
2、更容易定义一组容器的状态
如果我们没有使用pod,而是直接使用一组容器去跑一个业务呢,那么当其中一个或者若干个容器出现问题呢,我们如何去定义这一组容器的状态呢,通过pod这个概念,这个问题就可以很好的解决,一组业务容器跑在一个k8s的pod中,这个pod中会有一个pause容器,这个容器与其他的业务容器都没有关系,以这个pause容器的状态来代表这个pod的状态.
3、利于容器间文件共享,以及通信。
pod里的多个业务容器共享pause容器的ip和存储卷Volume,pod中的其他容器共享pause容器的ip地址和存储,这样就做到了文件共享和互信。
1.2 Pod 特性:
1 资源共享:IP和Volume
一个Pod里的多个容器可以共享存储和网络IP,可以看作一个逻辑的主机。共享的如 namespace,cgroups或者其他的隔离资源。
多个容器共享同一个network namespace,由此在一个Pod里的多个容器共享Pod的IP和端口namespace,所以一个Pod内的多个容器之间可以通过localhost来进行通信,所需要注意的是不同容器要注意不要有端口冲突即可。不同的Pod有不同的IP,不同Pod内的多个容器之前通信,不可以使用IPC(如果没有特殊指定的话)通信,通常情况下使用Pod的IP进行通信。
k8s要求底层网络支持集群内任意两个pod直接的TCP/IP直接通信,这通常才有虚拟二层网络技术来实现,例如Flannel,Openswitch等。
一个Pod里的多个容器可以共享存储卷,这个存储卷会被定义为Pod的一部分,并且可以挂载到该Pod里的所有容器的文件系统上。
2 生命周期短暂
Pod属于生命周期比较短暂的组件,比如,当Pod所在节点发生故障,那么该节点上的Pod会被调度到其他节点,但需要注意的是,被重新调度的Pod是一个全新的Pod,跟之前的Pod没有半毛钱关系。
3 平坦的网络
K8s集群中的所有Pod都在同一个共享网络地址空间中,也就是说每个Pod都可以通过其他Pod的IP地址来实现访问。
1.3 Pod使用和管理
1、核心原则是:将多个应用分散到多个Pod中 原因:基于资源的合理应用;扩缩容,不同应用应该有不同的扩缩容策略等。
结论:单Pod单容器应用,除非特殊原因。
你很少会直接在kubernetes中创建单个Pod。因为Pod的生命周期是短暂的,用后即焚的实体。当Pod被创建后(不论是由你直接创建还是被其他Controller),都会被Kubernetes调度到集群的Node上。直到Pod的进程终止、被删掉、因为缺少资源而被驱逐、或者Node故障之前这个Pod都会一直保持在那个Node上。
Pod不会自愈。如果Pod运行的Node故障,或者是调度器本身故障,这个Pod就会被删除。同样的,如果Pod所在Node缺少资源或者Pod处于维护状态,Pod也会被驱逐。Kubernetes使用更高级的称为Controller的抽象层,来管理Pod实例。虽然可以直接使用Pod,但是在Kubernetes中通常是使用Controller来管理Pod的。
1.4、Pod和Controller
Controller可以创建和管理多个Pod,提供副本管理、滚动升级和集群级别的自愈能力。例如,如果一个Node故障,Controller就能自动将该节点上的Pod调度到其他健康的Node上。
包含一个或者多个Pod的Controller示例:
Deployment
StatefulSet
DaemonSet
通常,Controller会用你提供的Pod Template来创建相应的Pod。
在用户定义范围内,如果pod增多,则ReplicationController会终止额外的pod,如果减少,RC会创建新的pod,始终保持在定义范围。例如,RC会在Pod维护(例如内核升级)后在节点上重新创建新Pod。
对Pod的定义可以通过Yaml或Json格式的配置文件来完成。关于Yaml或Json中都能写哪些参数,参考官网 http://kubernetes.io/docs/user-guide/pods/multi-container/
Pod的yaml整体文件内容及功能注解如下:
我们来看一个段实际的例子
在使用docker时,我们可以使用docker run命令创建并启动一个容器,而在Kubernetes系统中对长时间运行的容器要求是:其主程序需要一直在前台运行。如果我们创建的docker镜像的启动命令是后台执行程序,例如Linux脚本:
nohup ./startup.sh &
则kubelet创建包含这个容器的pod后运行完该命令,即认为Pod执行结束,之后根据RC中定义的pod的replicas副本数量生产一个新的pod,而一旦创建出新的pod,将在执行完命令后陷入无限循环的过程中,这就是Kubernetes需要我们创建的docker镜像以一个前台命令作为启动命令的原因。
对于无法改造为前台执行的应用,也可以使用开源工具supervisor辅助进行前台运行的功能。
Pod可以由一个或多个容器组合而成
场景1:单个应用多个容器
spring boot web:
kubectl create -f springboot-deployment.yml
kubectl get pods -o wide
加入 –o wide参数 查看额外信息:包括node和ip
pod处于pending的原因:通过 kubectl describe pods springbootweb 进一步查找问题。
可以看到pod的镜像信息写错了:
先删除pod,然后再创建: kubectl delete pod springbootweb
由于创建的端口号是9081,可以直接访问:curl 10.0.86.2:9081
# curl 10.0.86.2:9081
Hello world
场景2:Pod不同应用多个容器组合而成
例如:两个容器应用的前端frontend和redis为紧耦合的关系,应该组合成一个整体对外提供服务,则应该将这两个打包为一个pod.
配置文件frontend-localredis-pod.yaml如下:
属于一个Pod的多个容器应用之间相互访问只需要通过localhost就可以通信,这一组容器被绑定在一个环境中。
使用kubectl create创建该Pod后,get Pod信息可以看到如下图:
#kubectl get gods
可以看到READY信息为2/2,表示Pod中的两个容器都成功运行了.
2.3 集群外部访问Pod
上面的例子,在k8s集群的安装有kube-proxy的node节点上,可以直接通过curl 10.0.86.2:9081 访问集群的pod。但在集群外的客户端系统无法通过Pod的IP地址或者Service的虚拟IP地址和虚拟端口号访问到它们。为了让外部客户端可以访问这些服务,可以将Pod或Service的端口号映射到宿主机,以使得客户端应用能够通过物理机访问容器应用。
1、将容器应用的端口号映射到物理机
(2)通过设置Pod级别的hostNetwork-true,该Pod中所有容器的端口号都将被直接映射到物理机上。设置hostNetwork-true时需要注意,在容器的ports定义部分如果不指定hostPort,则默认hostPort等于containerPort,如果指定了hostPort,则hostPort必须等于containerPort的值。
静态pod是由kubelet进行管理的仅存在于特定Node的Pod上,他们不能通过API Server进行管理,无法与ReplicationController、Deployment或者DaemonSet进行关联,并且kubelet无法对他们进行健康检查。静态Pod总是由kubelet进行创建,并且总是在kubelet所在的Node上运行。
创建静态Pod有两种方式:配置文件或者HTTP方式
1)配置文件方式
首先,需要设置kubelet的启动参数"--config",指定kubelet需要监控的配置文件所在的目录,kubelet会定期扫描该目录,并根据目录中的 .yaml或 .json文件进行创建 *** 作
假设配置目录为/etc/kubelet.d/配置启动参数:--config=/etc/kubelet.d/,然后重启kubelet服务后,再宿主机受用docker ps或者在Kubernetes Master上都可以看到指定的容器在列表中
由于静态pod无法通过API Server直接管理,所以在master节点尝试删除该pod,会将其变为pending状态,也不会被删除
#kubetctl delete pod static-web-node1
要删除该pod的 *** 作只能在其所在的Node上 *** 作,将其定义的.yaml文件从/etc/kubelet.d/目录下删除
#rm -f /etc/kubelet.d/static-web.yaml
#docker ps
Volume类型包括:emtyDir、hostPath、gcePersistentDisk、awsElasticBlockStore、gitRepo、secret、nfs、scsi、glusterfs、persistentVolumeClaim、rbd、flexVolume、cinder、cephfs、flocker、downwardAPI、fc、azureFile、configMap、vsphereVolume等等,可以定义多个Volume,每个Volume的name保持唯一。在同一个pod中的多个容器能够共享pod级别的存储卷Volume。Volume可以定义为各种类型,多个容器各自进行挂载 *** 作,讲一个Volume挂载为容器内需要的目录。
如下图:
如上图中的Pod中包含两个容器:tomcat和busybox,在pod级别设置Volume “app-logs”,用于tomcat想其中写日志文件,busybox读日志文件。
配置文件如下:
busybox容器可以通过kubectl logs查看输出内容
#kubectl logs volume-pod -c busybox
tomcat容器生成的日志文件可以登录容器查看
#kubectl exec -ti volume-pod -c tomcat -- ls /usr/local/tomcat/logs
应用部署的一个最佳实践是将应用所需的配置信息于程序进行分离,这样可以使得应用程序被更好的复用,通过不用配置文件也能实现更灵活的功能。将应用打包为容器镜像后,可以通过环境变量或外挂文件的方式在创建容器时进行配置注入。ConfigMap是Kubernetes v1.2版本开始提供的一种统一集群配置管理方案。
6.1 ConfigMap:容器应用的配置管理
容器使用ConfigMap的典型用法如下:
ConfigMap以一个或多个key:value的形式保存在Kubernetes系统中共应用使用,既可以用于表示一个变量的值,也可以表示一个完整的配置文件内容。
通过yuaml配置文件或者直接使用kubelet create configmap 命令的方式来创建ConfigMap
6.2 ConfigMap的创建
举个小例子cm-appvars.yaml来描述将几个应用所需的变量定义为ConfigMap的用法:
# vim cm-appvars.yaml
执行kubectl create命令创建该ConfigMap
#kubectl create -f cm-appvars.yaml
查看建立好的ConfigMap:
#kubectl get configmap
kubectl describe configmap cm-appvars
kubectl get configmap cm-appvars -o yaml
另:创建一个cm-appconfigfile.yaml描述将两个配置文件server.xml和logging.properties定义为configmap的用法,设置key为配置文件的别名,value则是配置文件的文本内容:
在pod "cm-test-app"定义中,将configmap "cm-appconfigfile"中的内容以文件形式mount到容器内部configfiles目录中。
Pod配置文件cm-test-app.yaml内容如下:
创建该Pod:
#kubectl create -f cm-test-app.yaml
Pod "cm-test-app"created
登录容器查看configfiles目录下的server.xml和logging.properties文件,他们的内容就是configmap “cm-appconfigfile”中定义的两个key的内容
#kubectl exec -ti cm-test-app -- bash
root@cm-rest-app:/# cat /configfiles/server.xml
root@cm-rest-app:/# cat /configfiles/ logging.properties
6.3使用ConfigMap的条件限制
使用configmap的限制条件如下:
Pod在整个生命周期过程中被定义为各种状态,熟悉Pod的各种状态有助于理解如何设置Pod的调度策略、重启策略
Pod的状态包含以下几种,如图:
Pod的重启策略(RestartPolicy)应用于Pod内所有的容器,并且仅在Pod所处的Node上由kubelet进行判断和重启 *** 作。当某哥容器异常退出或者健康检查石柏师,kubelet将根据RestartPolicy的设置进行相应的 *** 作
Pod的重启策略包括Always、OnFailure及Nerver,默认值为Always。
kubelet重启失效容器的时间间隔以sync-frequency乘以2n来计算,例如1、2、4、8倍等,最长延时5分钟,并且成功重启后的10分钟后重置该事件。
Pod的重启策略和控制方式息息相关,当前可用于管理Pod的控制器宝库ReplicationController、Job、DaemonSet及直接通过kubelet管理(静态Pod),每种控制器对Pod的重启策略要求如下:
RC和DaemonSet:必须设置为Always,需要保证该容器持续运行
Job:OnFailure或Nerver,确保容器执行完成后不再重启
kubelet:在Pod失效时重启他,不论RestartPolicy设置什么值,并且也不会对Pod进行健康检查
对Pod的健康检查可以通过两类探针来检查:LivenessProbe和ReadinessProbe
LivenessProbe探针:用于判断容器是否存活(running状态),如果LivenessProbe探针探测到容器不健康,则kubelet杀掉该容器,并根据容器的重启策略做响应处理
ReadinessProbe探针:用于判断容器是否启动完成(ready状态),可以接受请求。如果ReadinessProbe探针探测失败,则Pod的状态被修改。Endpoint Controller将从service的Endpoint中删除包含该容器所在的Pod的Endpoint。
kubelet定制执行LivenessProbe探针来诊断容器的健康状况。LivenessProbe有三种事项方式。
1)ExecAction:在容器内部执行一个命令,如果该命令的返回值为0,则表示容器健康。例:
(2)TCPSocketAction:通过容器ip地址和端口号执行TCP检查,如果能够建立tcp连接表明容器健康。例:
3)HTTPGetAction:通过容器Ip地址、端口号及路径调用http get方法,如果响应的状态吗大于200且小于400,则认为容器健康。例:
对于每种探针方式,都需要设置initialDelaySeconds和timeoutSeconds两个参数,它们含义如下:
initialDelaySeconds:启动容器后首次监控检查的等待时间,单位秒
timeouSeconds:健康检查发送请求后等待响应的超时时间,单位秒。当发生超时就被认为容器无法提供服务无,该容器将被重启
九.玩转Pod调度
在Kubernetes系统中,Pod在大部分场景下都只是容器的载体而已,通常需要通过RC、Deployment、DaemonSet、Job等对象来完成Pod的调度和自动控制功能。
9.1 RC、Deployment:全自动调度
RC的主要功能之一就是自动部署容器应用的多份副本,以及持续监控副本的数量,在集群内始终维护用户指定的副本数量。
在调度策略上,除了使用系统内置的调度算法选择合适的Node进行调度,也可以在Pod的定义中使用NodeName、NodeSelector或NodeAffinity来指定满足条件的Node进行调度。
1)NodeName
Pod.spec.nodeName用于强制约束将Pod调度到指定的Node节点上,这里说是“调度”,但其实指定了nodeName的Pod会直接跳过Scheduler的调度逻辑,直接写入PodList列表,该匹配规则是强制匹配。
2)NodeSelector:定向调度
Kubernetes Master上的scheduler服务(kube-Scheduler进程)负责实现Pod的调度,整个过程通过一系列复杂的算法,最终为每个Pod计算出一个最佳的目标节点,通常我们无法知道Pod最终会被调度到哪个节点上。实际情况中,我们需要将Pod调度到我们指定的节点上,可以通过Node的标签和pod的nodeSelector属性相匹配来达到目的。
Pod.spec.nodeSelector是通过kubernetes的label-selector机制进行节点选择,由scheduler调度策略MatchNodeSelector进行label匹配,调度pod到目标节点,该匹配规则是强制约束。
启用节点选择器的步骤为:
kubectl label nodes <node-name><label-key>=<label-value>
例: #kubectllabel nodes k8s-node-1 zonenorth
运行kubectl create -f命令创建Pod,scheduler就会将该Pod调度到拥有zone=north标签的Node上。 如果多个Node拥有该标签,则会根据调度算法在该组Node上选一个可用的进行Pod调度。
需要注意的是:如果集群中没有拥有该标签的Node,则这个Pod也无法被成功调度。
3)NodeAffinity:亲和性调度
该调度策略是将来替换NodeSelector的新一代调度策略。由于NodeSelector通过Node的Label进行精确匹配,所有NodeAffinity增加了In、NotIn、Exists、DoesNotexist、Gt、Lt等 *** 作符来选择Node。调度侧露更加灵活。
9.2 DaemonSet:特定场景调度
DaemonSet用于管理集群中每个Node上仅运行一份Pod的副本实例,如图:
这种用法适合一些有下列需求的应用:
在实际生产环境中,我们经常遇到某个服务需要扩容的场景,也有可能因为资源精确需要缩减资源而需要减少服务实例数量,此时我们可以Kubernetes中RC提供scale机制来完成这些工作。
以redis-slave RC为例,已定义的最初副本数量为2,通过kubectl scale命令可以将Pod副本数量
#kubectl scale rc redis-slave --replicas=3
ReplicationController"redis-slave" scaled
#kubectl get pods
除了可以手工通过kubectl scale命令完成Pod的扩容和缩容 *** 作以外,新版本新增加了Horizontal Podautoscaler(HPA)的控制器,用于实现基于CPU使用路进行启动Pod扩容缩容的功能。该控制器基于Mastger的kube-controller-manager服务启动参数 --horizontal-pod-autoscler-sync-period定义的时长(默认30秒),周期性监控目标Pod的Cpu使用率并在满足条件时对ReplicationController或Deployment中的Pod副本数量进行调整,以符合用户定义的平均Pod Cpu使用率,Pod Cpu使用率来源于heapster组件,所以需预先安装好heapster。
当集群中的某个服务需要升级时,我们需要停止目前与该服务相关的所有Pod,然后重新拉取镜像并启动。如果集群规模较大,因服务全部停止后升级的方式将导致长时间的服务不可用。由此,Kubernetes提供了rolling-update(滚动升级)功能来解决该问题。
滚动升级通过执行kubectl rolling-update命令一键完成,该命令创建一个新的RC,然后自动控制旧版本的Pod数量逐渐减少到0,同时新的RC中的Pod副本数量从0逐步增加到目标值,最终实现Pod的升级。需要注意的是,系统要求新的RC需要与旧的RC在相同的Namespace内,即不能把别人的资产转到到自家名下。
例:将redis-master从1.0版本升级到2.0:
需要注意的点:
运行kubectl rolling-update来完成Pod的滚动升级:
#kubectl rolling-update redis-master -f redis-master-controller-v2.yaml
另一种方法就是不使用配置文件,直接用kubectl rolling-update加上--image参数指定新版镜像名来完成Pod的滚动升级
#kubectl rolling-update redis-master --image=redis-master:2.0
与使用配置文件的方式不同的是,执行的结果是旧的RC被删除,新的RC仍然使用就的RC的名字。
如果在更新过程总发现配置有误,则用户可以中断更新 *** 作,并通过执行kubectl rolling-update-rollback完成Pod版本的回滚。
xt live 作为line6曾经的旗舰,可以说功能在当时是非常强大的,我在10年入手了一款,当时价钱应该是4000吧,时隔好多年现在已经记不起来了。xt live是综合效果器,电子产品随着时间的迁移,你懂的,完重型,朋克,一些偏摇滚的已经不行了,但是要玩玩流行还是可以的。我的pod在前年已经坏掉,当时是准备出手,然后我拿了潮湿的抹布擦了擦,居然就坏了,我想他是爱我的,所以就用这种方式留在了我的身边。我来说说如何用pod xt live 做音色吧,有两种方式做效果,一种是直接在板子上调,另一种是在官网下载驱动,连接电脑进行调音。给你的驱动和程序里面还是预制了很多音色,你可以直接选用,对于小白我这么推荐,而且电脑上的界面非常清晰,把pod的模拟效果具象话为一个个小的单块,你的pod 背后有一个编码,一般是手写的,那个就是你的机器编码,使用程序时需要用到。如果你想要自己专门设定的话,就要慢慢道来看,首先合成器是模拟单块串联来合成效果。你先学习下单块的特点和用法,我建议你买一本叫做调琴圣手的书,专门分析每一种效果器的特点。再根据每个效果自己叠加来选择自己想要的音色,因为老pod确实 *** 作比较繁杂,主要也是当时技术的限制,选择每一个效果时要一个一个调,我这里有电子版的中文说明书,我没有太多精力给你说的很清楚,想要具体的消息可以私信我。我把说明书给你发过去。不用谢,能为喜欢电吉他的同胞解答,很开心。欢迎分享,转载请注明来源:内存溢出
评论列表(0条)