编写DetectFaceDemo.java,代码如下:
[java] view
plaincopyprint?
package com.njupt.zhb.test
import org.opencv.core.Core
import org.opencv.core.Mat
import org.opencv.core.MatOfRect
import org.opencv.core.Point
import org.opencv.core.Rect
import org.opencv.core.Scalar
import org.opencv.highgui.Highgui
import org.opencv.objdetect.CascadeClassifier
//
// Detects faces in an image, draws boxes around them, and writes the results
// to "faceDetection.png".
//
public class DetectFaceDemo {
public void run() {
System.out.println("\nRunning DetectFaceDemo")
System.out.println(getClass().getResource("lbpcascade_frontalface.xml").getPath())
// Create a face detector from the cascade file in the resources
// directory.
//CascadeClassifier faceDetector = new CascadeClassifier(getClass().getResource("lbpcascade_frontalface.xml").getPath())
//Mat image = Highgui.imread(getClass().getResource("lena.png").getPath())
//注意:源程序的路径会多打印一个‘/’,因此总是出现如下错误
/*
* Detected 0 faces Writing faceDetection.png libpng warning: Image
* width is zero in IHDR libpng warning: Image height is zero in IHDR
* libpng error: Invalid IHDR data
*/
//因此,我们将第一个字符去掉
String xmlfilePath=getClass().getResource("lbpcascade_frontalface.xml").getPath().substring(1)
CascadeClassifier faceDetector = new CascadeClassifier(xmlfilePath)
Mat image = Highgui.imread(getClass().getResource("we.jpg").getPath().substring(1))
// Detect faces in the image.
// MatOfRect is a special container class for Rect.
MatOfRect faceDetections = new MatOfRect()
faceDetector.detectMultiScale(image, faceDetections)
System.out.println(String.format("Detected %s faces", faceDetections.toArray().length))
// Draw a bounding box around each face.
for (Rect rect : faceDetections.toArray()) {
Core.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 255, 0))
}
// Save the visualized detection.
String filename = "faceDetection.png"
System.out.println(String.format("Writing %s", filename))
Highgui.imwrite(filename, image)
}
}
package com.njupt.zhb.test
import org.opencv.core.Core
import org.opencv.core.Mat
import org.opencv.core.MatOfRect
import org.opencv.core.Point
import org.opencv.core.Rect
import org.opencv.core.Scalar
import org.opencv.highgui.Highgui
import org.opencv.objdetect.CascadeClassifier
//
// Detects faces in an image, draws boxes around them, and writes the results
// to "faceDetection.png".
//
public class DetectFaceDemo {
public void run() {
System.out.println("\nRunning DetectFaceDemo")
System.out.println(getClass().getResource("lbpcascade_frontalface.xml").getPath())
// Create a face detector from the cascade file in the resources
// directory.
//CascadeClassifier faceDetector = new CascadeClassifier(getClass().getResource("lbpcascade_frontalface.xml").getPath())
//Mat image = Highgui.imread(getClass().getResource("lena.png").getPath())
//注意:源程序的路径会多打印一个‘/’,因此总是出现如下错误
/*
* Detected 0 faces Writing faceDetection.png libpng warning: Image
* width is zero in IHDR libpng warning: Image height is zero in IHDR
* libpng error: Invalid IHDR data
*/
//因此,我们将第一个字符去掉
String xmlfilePath=getClass().getResource("lbpcascade_frontalface.xml").getPath().substring(1)
CascadeClassifier faceDetector = new CascadeClassifier(xmlfilePath)
Mat image = Highgui.imread(getClass().getResource("we.jpg").getPath().substring(1))
// Detect faces in the image.
// MatOfRect is a special container class for Rect.
MatOfRect faceDetections = new MatOfRect()
faceDetector.detectMultiScale(image, faceDetections)
System.out.println(String.format("Detected %s faces", faceDetections.toArray().length))
// Draw a bounding box around each face.
for (Rect rect : faceDetections.toArray()) {
Core.rectangle(image, new Point(rect.x, rect.y), new Point(rect.x + rect.width, rect.y + rect.height), new Scalar(0, 255, 0))
}
// Save the visualized detection.
String filename = "faceDetection.png"
System.out.println(String.format("Writing %s", filename))
Highgui.imwrite(filename, image)
}
}
3.编写测试类:
[java] view
plaincopyprint?
package com.njupt.zhb.test
public class TestMain {
public static void main(String[] args) {
System.out.println("Hello, OpenCV")
// Load the native library.
System.loadLibrary("opencv_java246")
new DetectFaceDemo().run()
}
}
//运行结果:
//Hello, OpenCV
//
//Running DetectFaceDemo
///E:/eclipse_Jee/workspace/JavaOpenCV246/bin/com/njupt/zhb/test/lbpcascade_frontalface.xml
//Detected 8 faces
//Writing faceDetection.png
package com.njupt.zhb.test
public class TestMain {
public static void main(String[] args) {
System.out.println("Hello, OpenCV")
// Load the native library.
System.loadLibrary("opencv_java246")
new DetectFaceDemo().run()
}
}
//运行结果:
//Hello, OpenCV
//
//Running DetectFaceDemo
///E:/eclipse_Jee/workspace/JavaOpenCV246/bin/com/njupt/zhb/test/lbpcascade_frontalface.xml
//Detected 8 faces
//Writing faceDetection.png
便衣警察跟踪人的方式一般是通过隐蔽、秘密的方式进行,以不被跟踪对象发现。具体 *** 作方法可能因地区和情况而异,但通常包括以下几个方面:1. 预先调查:便衣警察会在开始跟踪前对目标进行预先调查,了解其行动规律、活动范围等信息。
2. 身份伪装:为了避免被发现,便衣警察通常会身着普通服装或者与当地环境相符合的服饰,并且不携带明显的执法工具。
3. 使用技术手段:如使用无线电设备监听目标交流内容、安装GPS定位器追踪目标位置等。
4. 保持距离:为了避免引起怀疑和暴露自己的身份,便衣警察通常会保持一定距离并尽量避免直接接触目标。
需要注意的是,在执行任务时必须严格按照相关法律法规和程序进行 *** 作,并确保不损害公民合法权益。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)