具体如下:
1、如果加入D抖动的特别厉害,试试只用PI控制。
2、还有PID参数都是一步一步调出来的,我建议你做个上位机,就是个简单的VB串口程序,用来设置PID参数
3、然后在单片机这边弄个串口接收程序,这里就是个简单的串口程序,人人都会,把接收到的PID存储在缓冲区里。
4、然后单片机程序直接调用。单片机带EEPROM的话,当接收到改变的PID参数时,存储这些参数。去STC官网下你的单片机资料,上面有EEPROM测试程序,直接套用。
//P1.1(T0):Count They Distance//P0.4:Tx
//P0.5:Rx
#include <C8051F310.h>//SFR declarations
#include <stdio.h>//Standard I/O definition file
#include <math.h>//Math library file
#include <Intrins.h>
#include <absacc.h>
unsigned int j,i
char a=0
unsigned int t=0
//sbit led=P0^2
sbit vls=P0^4//P0.4(GPIO):给定左轮方向.
sbit vlf=P0^6//P0.6(T0) :反馈左轮速度.
sbit dlf=P1^0//P1.0(GPIO):反馈左轮方向.
//P0.2(PWM0):给定右轮速度.
sbit vrs=P0^5//P0.5(GPIO):给定右轮方向.
sbit vrf=P0^7//P0.7(T0) :反馈右轮速度.
sbit drf=P1^1//P1.1(GPIO):反馈右轮方向.
int ol//左轮给定值
int len
int len_1,len_2
int lyn_1,lyn_2
int vl1,vl2//反馈左轮速度值(取样周期内的方波数)
int lfz//运算后赋给PWM的值
int lyn,lynn
int lun=0,lun_1=0//偏差校正值 即校正PWM输出
int lunp,luni,lund//PID 校正值
int or//右轮给定值
int ren
int ren_1,ren_2
int ryn_1,ryn_2
int vr1,vr2//反馈右轮速度值(取样周期内的方波数)
int rfz//运算后赋给PWM的值
int ryn,rynn
int run=0,run_1=0//偏差校正值 即校正PWM输出
int runp,runi,rund//PID 校正值
float kp=2.0//比例系数1.8
float kd=0.2//微分系数0.4
float lki//积分系数
void pio_init(void)
void sys_init(void)
void t01_init(void)
void TIME3_INT(void)
void PID(void)
void interrupt_init(void)
void delay(unsigned int x)
void pwm1_1(void)
void main(void)
{
PCA0MD &= ~0x40//关闭
pio_init()//P11为测距输入端
sys_init()
t01_init()
pwm1_1()
TIME3_INT()
interrupt_init()
vls=1vrs=0
while(1)
{
ol=50
or=50
delay(1000)
ol=100
or=100
delay(1000)
ol=-50
or=50
delay(1000)
}
}
void PID(void)
{
/****************左轮PID调节******************/
if(dlf==1)
{
lyn=(vl2*256+vl1)//dlf是左轮反馈方向,0表示向前 vl=TL0
}
else
{
lyn=-(vl2*256+vl1)//dlf=1表示是向后退,速度应该为负值
}
len=ol-lyn//误差=给定速度-反馈速度(取样周期内的方波数)
if(abs(len)<8)//30
{
lki=1.4//ki值的确定1.4
}
else
{
lki=0.05//积分系数:如果 | 给定值-反馈值 | 太大
} //则就可以不引入积分,或者引入的很小0.05
lunp=kp*(len-len_1)//比例校正
luni=lki*len//积分校正
lund=kd*(len-2*len_1+len_2)//微分校正
lun=lunp+luni+lund+lun_1//总校正
/*************新旧数据更新*************************/
len_2=len_1
len_1=len//len:当前取样周期内出现的速度偏差len_1:上次取样周期内出现的速度偏差
lun_1=lun//lun:当前取样周期内得出的PWM校正值lun_1:上次取样周期内得出的PWM校正值
/*************新旧数据更新*************************/
if(lun>255)
{
lun=255//正速度
}
if(lun<-255)
{
lun=-255//负速度
}
if(lun<0)
{
vls=1
PCA0CPH0=-lun
}
if(lun>=0)
{
vls=0
PCA0CPH0=lun
}
/****************右轮PID调节******************/
if(drf==0)
{
ryn=(vr2*256+vr1)//drf是右轮反馈方向,0表示向前 vl=TL0
}
else
{
ryn=-(vr2*256+vr1)//dlf=1表示是向后退,速度应该为负值
}
ren=or-ryn//误差=给定速度-反馈速度(取样周期内的方波数)
if(abs(ren)<8)//30
{
lki=1.4//ki值的确定1.4
}
else
{
lki=0.05//积分系数:如果 | 给定值-反馈值 | 太大
} //则就可以不引入积分,或者引入的很小0.05
runp=kp*(ren-ren_1)//比例校正
runi=lki*ren//积分校正
rund=kd*(ren-2*ren_1+ren_2)//微分校正
run=runp+runi+rund+run_1//总校正
/*************新旧数据更新*************************/
ren_2=ren_1
ren_1=ren//len:当前取样周期内出现的速度偏差len_1:上次取样周期内出现的速度偏差
run_1=run//lun:当前取样周期内得出的PWM校正值lun_1:上次取样周期内得出的PWM校正值
/*************新旧数据更新*************************/
if(run>255)
{
run=255//正速度
}
if(run<-255)
{
run=-255//负速度
}
if(run<0)
{
vrs=1
PCA0CPH1=-run
}
if(run>=0)
{
vrs=0
PCA0CPH1=run
}
//因为这里的PCA0CPH0越大,对应的电机速度越小,所以要255来减一下
}
void pio_init(void)
{
XBR0=0x00//0000 0001
XBR1=0x72//0111 0010 时能弱上拉 T0T1连接到脚口P06、P07 CEX0、CEX1连接到脚口P00、P01
P0MDIN=0xff//模拟(0)数字(1) 1111 0011
P0MDOUT=0xc3//开漏(0)推挽(1) 1111 1111
P0SKIP=0x3c//0011 1100
P1MDIN=0xff//1111 1111
P1MDOUT=0xfc//
P1SKIP=0x00//1111 1111
}
void sys_init(void) //12MHz
{
OSCICL=0x43
OSCICN=0xc2
CLKSEL=0x00
}
void pwm1_1(void) //PWM的初始化
{
PCA0MD=0x08//PCA时钟为12分频
PCA0CPL0=200//左轮
PCA0CPM0=0x42//设置左轮为8位PWM输出
PCA0CPH0=200
PCA0CPL1=200//平衡校正
PCA0CPM1=0x42//设置为8位PWM输出
PCA0CPH1=200
PCA0CN=0x40//允许PCA工作
}
void t01_init(void)
{
TCON=0x50//计数器1、2允许
TMOD=0x55//定时器1、2采用16位计数功能
CKCON=0x00
TH1=0x00//用于采集左轮的速度
TL1=0x00
TH0=0x00//用于采集右轮的速度
TL0=0x00
}
void TIME3_INT(void)
{
TMR3CN = 0x00//定时器3为16位自动重载
CKCON &= ~0x40
TMR3RLL = 0xff
TMR3RLH = 0xd7
TMR3L = 0xff
TMR3H = 0xd7
TMR3CN |= 0x04
}
void T3_ISR() interrupt 14 //定时器3中断服务程序
{
//led=~led
EA=0
TCON &=~0x50//关闭计数器0、1
vl1=TL0//取左轮速度值
vl2=TH0
vr1=TL1//取右轮速度值
vr2=TH1
TH1=0x00
TL1=0x00
TH0=0x00
TL0=0x00
PID()//PID处理
TMR3CN &=~0x80//清中断标志位
TCON |=0x50//重新开计数器0、1
EA=1
}
void interrupt_init(void)
{ IE=0x80
IP=0x00
EIE1|=0x80
EIP1|=0x80
}
void delay(unsigned int m) //延时程序
{
for(i=0i<2000i++)
{
for(j=0j<mj++){_nop_()_nop_()}
}
}
//PID算法温控C语言2008-08-17 18:58#include<reg51.h>
#include<intrins.h>
#include<math.h>
#include<string.h>
struct PID {
unsigned int SetPoint// 设定目标 Desired Value
unsigned int Proportion// 比例常数 Proportional Const
unsigned int Integral// 积分常数 Integral Const
unsigned int Derivative// 微分常数 Derivative Const
unsigned int LastError// Error[-1]
unsigned int PrevError// Error[-2]
unsigned int SumError// Sums of Errors
}
struct PID spid// PID Control Structure
unsigned int rout// PID Response (Output)
unsigned int rin// PID Feedback (Input)
sbit data1=P1^0
sbit clk=P1^1
sbit plus=P2^0
sbit subs=P2^1
sbit stop=P2^2
sbit output=P3^4
sbit DQ=P3^3
unsigned char flag,flag_1=0
unsigned char high_time,low_time,count=0//占空比调节参数
unsigned char set_temper=35
unsigned char temper
unsigned char i
unsigned char j=0
unsigned int s
/***********************************************************
延时子程序,延时时间以12M晶振为准,延时时间为30us×time
***********************************************************/
void delay(unsigned char time)
{
unsigned char m,n
for(n=0n<timen++)
for(m=0m<2m++){}
}
/***********************************************************
写一位数据子程序
***********************************************************/
void write_bit(unsigned char bitval)
{
EA=0
DQ=0/*拉低DQ以开始一个写时序*/
if(bitval==1)
{
_nop_()
DQ=1/*如要写1,则将总线置高*/
}
delay(5)/*延时90us供DA18B20采样*/
DQ=1/*释放DQ总线*/
_nop_()
_nop_()
EA=1
}
/***********************************************************
写一字节数据子程序
***********************************************************/
void write_byte(unsigned char val)
{
unsigned char i
unsigned char temp
EA=0 /*关中断*/
TR0=0
for(i=0i<8i++) /*写一字节数据,一次写一位*/
{
temp=val>>i/*移位 *** 作,将本次要写的位移到最低位*/
temp=temp&1
write_bit(temp)/*向总线写该位*/
}
delay(7)/*延时120us后*/
// TR0=1
EA=1/*开中断*/
}
/***********************************************************
读一位数据子程序
***********************************************************/
unsigned char read_bit()
{
unsigned char i,value_bit
EA=0
DQ=0/*拉低DQ,开始读时序*/
_nop_()
_nop_()
DQ=1/*释放总线*/
for(i=0i<2i++){}
value_bit=DQ
EA=1
return(value_bit)
}
/***********************************************************
读一字节数据子程序
***********************************************************/
unsigned char read_byte()
{
unsigned char i,value=0
EA=0
for(i=0i<8i++)
{
if(read_bit()) /*读一字节数据,一个时序中读一次,并作移位处理*/
value|=0x01<<i
delay(4)/*延时80us以完成此次都时序,之后再读下一数据*/
}
EA=1
return(value)
}
/***********************************************************
复位子程序
***********************************************************/
unsigned char reset()
{
unsigned char presence
EA=0
DQ=0/*拉低DQ总线开始复位*/
delay(30)/*保持低电平480us*/
DQ=1/*释放总线*/
delay(3)
presence=DQ/*获取应答信号*/
delay(28)/*延时以完成整个时序*/
EA=1
return(presence)/*返回应答信号,有芯片应答返回0,无芯片则返回1*/
}
/***********************************************************
获取温度子程序
***********************************************************/
void get_temper()
{
unsigned char i,j
do
{
i=reset()/*复位*/
}while(i!=0)/*1为无反馈信号*/
i=0xcc/*发送设备定位命令*/
write_byte(i)
i=0x44/*发送开始转换命令*/
write_byte(i)
delay(180)/*延时*/
do
{
i=reset()/*复位*/
}while(i!=0)
i=0xcc/*设备定位*/
write_byte(i)
i=0xbe/*读出缓冲区内容*/
write_byte(i)
j=read_byte()
i=read_byte()
i=(i<<4)&0x7f
s=(unsigned int)(j&0x0f)
s=(s*100)/16
j=j>>4
temper=i|j/*获取的温度放在temper中*/
}
/*====================================================================================================
Initialize PID Structure
=====================================================================================================*/
void PIDInit (struct PID *pp)
{
memset ( pp,0,sizeof(struct PID))
}
/*====================================================================================================
PID计算部分
=====================================================================================================*/
unsigned int PIDCalc( struct PID *pp, unsigned int NextPoint )
{
unsigned int dError,Error
Error = pp->SetPoint - NextPoint// 偏差
pp->SumError += Error// 积分
dError = pp->LastError - pp->PrevError// 当前微分
pp->PrevError = pp->LastError
pp->LastError = Error
return (pp->Proportion * Error//比例
+ pp->Integral * pp->SumError //积分项
+ pp->Derivative * dError)// 微分项
}
/***********************************************************
温度比较处理子程序
***********************************************************/
compare_temper()
{
unsigned char i
if(set_temper>temper)
{
if(set_temper-temper>1)
{
high_time=100
low_time=0
}
else
{
for(i=0i<10i++)
{ get_temper()
rin = s// Read Input
rout = PIDCalc ( &spid,rin )// Perform PID Interation
}
if (high_time<=100)
high_time=(unsigned char)(rout/800)
else
high_time=100
low_time= (100-high_time)
}
}
else if(set_temper<=temper)
{
if(temper-set_temper>0)
{
high_time=0
low_time=100
}
else
{
for(i=0i<10i++)
{ get_temper()
rin = s// Read Input
rout = PIDCalc ( &spid,rin )// Perform PID Interation
}
if (high_time<100)
high_time=(unsigned char)(rout/10000)
else
high_time=0
low_time= (100-high_time)
}
}
// else
// {}
}
/*****************************************************
T0中断服务子程序,用于控制电平的翻转 ,40us*100=4ms周期
******************************************************/
void serve_T0() interrupt 1 using 1
{
if(++count<=(high_time))
output=1
else if(count<=100)
{
output=0
}
else
count=0
TH0=0x2f
TL0=0xe0
}
/*****************************************************
串行口中断服务程序,用于上位机通讯
******************************************************/
void serve_sio() interrupt 4 using 2
{
/* EA=0
RI=0
i=SBUF
if(i==2)
{
while(RI==0){}
RI=0
set_temper=SBUF
SBUF=0x02
while(TI==0){}
TI=0
}
else if(i==3)
{
TI=0
SBUF=temper
while(TI==0){}
TI=0
}
EA=1*/
}
void disp_1(unsigned char disp_num1[6])
{
unsigned char n,a,m
for(n=0n<6n++)
{
// k=disp_num1[n]
for(a=0a<8a++)
{
clk=0
m=(disp_num1[n]&1)
disp_num1[n]=disp_num1[n]>>1
if(m==1)
data1=1
else
data1=0
_nop_()
clk=1
_nop_()
}
}
}
/*****************************************************
显示子程序
功能:将占空比温度转化为单个字符,显示占空比和测得到的温度
******************************************************/
void display()
{
unsigned char code number[]={0xfc,0x60,0xda,0xf2,0x66,0xb6,0xbe,0xe0,0xfe,0xf6}
unsigned char disp_num[6]
unsigned int k,k1
k=high_time
k=k%1000
k1=k/100
if(k1==0)
disp_num[0]=0
else
disp_num[0]=0x60
k=k%100
disp_num[1]=number[k/10]
disp_num[2]=number[k%10]
k=temper
k=k%100
disp_num[3]=number[k/10]
disp_num[4]=number[k%10]+1
disp_num[5]=number[s/10]
disp_1(disp_num)
}
/***********************************************************
主程序
***********************************************************/
main()
{
unsigned char z
unsigned char a,b,flag_2=1,count1=0
unsigned char phil[]={2,0xce,0x6e,0x60,0x1c,2}
TMOD=0x21
TH0=0x2f
TL0=0x40
SCON=0x50
PCON=0x00
TH1=0xfd
TL1=0xfd
PS=1
EA=1
EX1=0
ET0=1
ES=1
TR0=1
TR1=1
high_time=50
low_time=50
PIDInit ( &spid )// Initialize Structure
spid.Proportion = 10// Set PID Coefficients
spid.Integral = 8
spid.Derivative =6
spid.SetPoint = 100// Set PID Setpoint
while(1)
{
if(plus==0)
{
EA=0
for(a=0a<5a++)
for(b=0b<102b++){}
if(plus==0)
{
set_temper++
flag=0
}
}
else if(subs==0)
{
for(a=0a<5a++)
for(b=0a<102b++){}
if(subs==0)
{
set_temper--
flag=0
}
}
else if(stop==0)
{
for(a=0a<5a++)
for(b=0b<102b++){}
if(stop==0)
{
flag=0
break
}
EA=1
}
get_temper()
b=temper
if(flag_2==1)
a=b
if((abs(a-b))>5)
temper=a
else
temper=b
a=temper
flag_2=0
if(++count1>30)
{
display()
count1=0
}
compare_temper()
}
TR0=0
z=1
while(1)
{
EA=0
if(stop==0)
{
for(a=0a<5a++)
for(b=0b<102b++){}
if(stop==0)
disp_1(phil)
// break
}
EA=1
}
}
//DS18b20 子程序
#include <REG52.H>
sbit DQ=P2^1 //定义端口
typedef unsigned char byte
typedef unsigned int word
//延时
void delay(word useconds)
{
for(useconds>0useconds--)
}
//复位
byte ow_reset(void)
{
byte presence
DQ=0//DQ低电平
delay(29) //480us
DQ=1//DQ高电平
delay(3)//等待
presence=DQ//presence信号
delay(25)
return(presence)
} //0允许,1禁止
//从1-wire 总线上读取一个字节
byte read_byte(viod)
{
byte i
byte value=0
for (i=8i>0i--)
{
value>>=1
DQ=0
DQ=1
delay(1)
if(DQ)value|=0x80
delay(6)
}
return(value)
}
//向1-wire总线上写一个字节
void write_byte(char val)
{
byte i
for (i=8i>0i--) //一次写一个字节
{
DQ=0
DQ=val&0x01
delay(5)
DQ=1
val=val/2
}
delay(5)
}
//读取温度
char Read_Temperature(void)
{
union{
byte c[2]
int x
}temp
ow_reset()
write_byte(0xcc)
write_byte(0xBE)
temp.c[1]=read_byte()
temp.c[0]=read_byte()
ow_reset()
write_byte(0xCC)
write_byte(0x44)
return temp.x/2
}
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)