DPD技术主要的实现方式是对输入PA部件的信号和PA部件的输出信号进行采样,并进行误差的算法,从而在PA的输入口加入一个与PA的失真反方向的信号,抵消PA部件的失真.
由于一般需要抵消到功放的五阶互调,因此DPD的处理带宽需要是信号带宽的五倍.
PA的非线性参数包括: 1dB压缩点、相邻信道功率比ACPR、错误向量幅度EVM、三阶交调点(具体百度)
PA关键指标的测量:
https://blog.csdn.net/daxiangwusheng/article/details/114686344?ops_request_misc=&request_id=&biz_id=102&utm_term=%E5%B0%84%E9%A2%91PA%E7%9A%84%E5%85%B3%E9%94%AE%E6%80%A7%E8%83%BD%E6%8C%87%E6%A0%87&utm_medium=distribute.pc_search_result.none-task-blog-2 all sobaiduweb~default-0-114686344.first_rank_v2_pc_rank_v29
DPD基本原理
基于功放特征(非线性),对输入信号进行预失真处理(就是降低非线性度),使得经过功放非线性压缩后(已过P1dB压缩点),实际输出仍满足理想线性特征。 (说人话-提升PA线性度)
此外, 由于功放的非线性会引入互调(互调会引入干扰哦),而DPD正是利用这些互调信息才能计算出对应的矫正系数。
举个栗子,如上图, 本来 PA输入为Vin时,为了得到等效理想线性输出Vout_des,现通过对Vin进行预失真放大到Vin_pd (放大增益G=Vin_pd/Vin) 从而达到对PA输入Vin,输出为Vout_des的效果. 这就强行提高了PA的非线性度.
现在手机射频常用的是数字预失真(即在基带中实现DPD)
通过对PA的输出采数并处理后反馈到预失真器的输入, 将原始输入信号Vin与反馈分量在预失真器中进行算法处理..
DPD既有硬件部分(DPD校准链路,DPD发射链路) ,也有算法,NV配置.(此处省略1W字,讲不清)
在现有的业务场景下,DPD常与APT ET等技术混合使用
当基站下发的目标功率信息后,手机会判定是否启用DPD模式,如果目标功率较小,则进入APT模式,若目标功率较大,则启用DPD模式;根据目标功率值,确定使用哪一张LUT表(不同的LUT表就是不同的校准模式下提取到的校准参数) ,然后加上温补参数, 就可以计算出该输出配置功率值.
在DPD特性中,LUT表是一个非常重要的参数,表征的是AM-AM归一化的线性关系。LUT表生成的过程本质上是获取PA非线性模型的过程 (万物皆可建模) ,然后在数字域对信号进行预失真处理,其校准结果就是针对Pin在数字域的补偿增益。
后记
因DPD校准过程复杂,还引入了CFR削波(恶化EVM) ,此外,DPD使能后,引入非线性补偿,也引入带外信号的扩展,为保证补偿信号通过发射通道,发射通道采样率也需要同步满足(采样定理)
最后, 发射机为了抑制带外杂散,引入对应带宽的滤波器,滤除非线性补偿信号,需要预加重滤波器等设计保证补偿信号的通过。
综合来看,由DPD校准引起的问题,需要结合CT Log和产线环境综合处理. 还需回查NV配置,重新提取参数对比验证,看电压配置等. 最后 排查TX 和MRX链路配置.
DPD:PA线性化技术更大的突破是可使信号预失真。预失真是PA线性化的“法宝”,不过这也非常复杂,并要求了解PA失真特性——而该特性的变化方式非常复杂。预失真原理:通过一个预失真元件(Predistorter)来和功放元件(PA) 级联,非线性失真功能内置于数字、数码基带信号处理域中,其与放大器展示的失真数量相当(“相等”),但功能却相反。将这两个非线性失真功能相结合,便能够实现高度线性、无失真的系统。数字预失真技术的挑战在于PA的失真(即非线性)特性会随时间、温度以及偏压(biasing)的变化而变化,因器件的不同而不同。因此,尽管能为一个器件确定特性并设计正确的预失真算法,但要对每个器件都进行上述工作在经济上则是不可行的。为了解决上述偏差,我们须使用反馈机制,对输出信号进行采样,并用以校正预失真算法。数字预失真采用数字电路实现这个预失真器(Predistorter),通常采用数字信号处理来完成。通过增加一个非线性电路用以补偿功率放大器的非线性。这样就可以在功率放大器(PA)内使用简单的AB类平台,从而可以消除基站厂商制造前馈放大器 (feedforward amplifier)的负担和复杂性。此外,由于放大器不再需要误差放大器失真矫正电路,因此可以显着提高系统效率。
预失真线性化技术,它的优点在于不存在稳定性问题,有更宽的信号频带,能够处理含多载波的信号。预失真技术成本较低,工艺简单,便于生产,效率较高,一般可以达到19%以上。
数字预失真的缺点:线性度略低于前馈技术,但是目前两者的水平已经比较接近。
数字预失真技术目前之所以没有像前馈技术那样得到广泛应用,主要原因是该技术存在以下技术瓶颈:宽带功放的非线性特性建模,它的挑战在于PA的失真(即非线性)特性会随时间、温度以及偏压(biasing)的变化而变化,因器件的不同而不同。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)