下面的图中给出了大致的流程,首先我们会生成接收得到的差频信号,然后采用了二维FFT进行了Range-Doppler,也就是距离多普勒处理,最后给出了经过二维FFT处理后的 RDM (Range Doppler Map)。
在接收得到的差频信号的第一个周期的信号,将其表示为复指数形式为
其中, B 为扫频带宽, f0 为起始频率, N 表示一个周期的采样点数, R 和 v 为目标的距离和速度信息。
上面的式子已经给出了该FMCW雷达在快时间维度的接收差频信号的表示,在此基础上,可以进一步推出快时间维度和慢时间维度上接收差频信号的表示
利用上面这两个式子,即可得到含有目标距离和速度信息的接收差频信号。
到这里,我们已经得到了含有目标状态信息的接收信号。
在进行距离维的FFT之前,为了减小泄露加了window,后面的多普勒维在做FFT之前同样加了window,了解了这些后,对前面构造的接收信号做距离维的FFT,就可以得到目标的距离信息,我们会看到距离维的FFT结果中会存在一些峰值,这些峰值所在的位置就是目标的位置,当然,目标的峰值位置与目标的实际位置之间存在一个转换关系。
利用距离分辨率就可以将距离FFT得到的峰值位置与目标的实际位置联系起来,将峰值位置转换为目标的实际距离值。
同样的在多普勒维度进行FFT可以得到目标的速度信息,和距离维的FFT结果一样,在多普勒维度内的峰值位置与目标的实际速度之间也存在着一个转换关系。
这个程序中,我们设置了两个目标,它们的距离和速度分别为
最后简单运行一下,可以得到一个RDM图
可以看到,对生成的接收信号的距离-多普勒处理得到两个峰值,利用距离分辨率和速度分辨率可以得到这两个目标的实际距离和速度信息。
题图:Snapshot_Factory,from the Pixabay.
多普勒效应计算公式分为以下三种:
1、纵向多普勒效应(即波源的速度与波源与接收器的连线共线):f'=f[(c+v)/(c-v)]^(1/2),其中v为波源与接收器的相对速度。当波源与观察者接近时,v取正,称为“紫移”或“蓝移”。否则v取负,称为“红移”。
2、横向多普勒效应(即波源的速度与波源与接收器的连线垂直):f'=f(1-β^2)^(1/2),其中β=v/c。
3、普遍多普勒效应(多普勒效应的一般情况):f'=f[(1-β^2)^(1/2)]/(1-βcosθ),其中β=v/c,θ为接收器与波源的连线到速度方向。
多普勒效应是奥地利物理学家及数学家克里斯琴・约翰・多普勒于1842年提出。主要内容为:由于波源和观察者之间有相对运动,使观察者感到频率发生变化的现象。
具有波动性的光也会出现这种效应,又被称为多普勒-斐索效应。因为法国物理学家斐索,于1848年独立地对来自恒星的波长偏移做了解释,指出了这种效应测量恒星相对速度的办法。光波与声波的不同之处在于,光波频率的变化使人感觉到是颜色的变化。如果恒星远离我们而去,则光的谱线就向红光方向移动,称为红移。如果恒星朝向我们运动,光的谱线就向紫光方向移动,称为蓝移。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)