这是你没定义dtwOptSet,当然dtw和dtwOptSet都是作者自定义的函数,不在matlab的标准库里,这个图也是明显用了3个subplot画的
如果你想运行这个,请去作者推荐的
http://mirlab.org/jang/books/dcpr/introMatlabProgram.asp?title=1-2%20Example%20Programs%20(%A6p%A6%F3%A8%FA%B1o%B5{%A6%A1%BDX)
下载example就可以了.
语音识别原理
语音识别系统的本质就是一种模式识别系统,它也包括特征提取、模式匹配、参考模式库等基本单元。由于语音信号是一种典型的非平稳信号,加之呼吸气流、外部噪音、电流干扰等使得语音信号不能直接用于提取特征,而要进行前期的预处理。预处理过程包括预滤波、采样和量化、分帧、加窗、预加重、端点检测等。经过预处理的语音数据就可以进行特征参数提取。在训练阶段,将特征参数进行一定的处理之后,为每个词条得到一个模型,保存为模板库。在识别阶段,语音信号经过相同的通道得到语音参数,生成测试模板,与参考模板进行匹配,将匹配分数最高的参考模板作为识别结果。后续的处理过程还可能包括更高层次的词法、句法和文法处理等,从而最终将输入的语音信号转变成文本或命令。
DTW算法原理
DTW是把时间规整和距离测度计算结合起来的一种非线性规整技术,它寻找一个规整函数im=Ф(in) ,将测试矢量的时间轴n非线性地映射到参考模板的时间轴m上,并使该函数满足:
D就是处于最优时间规整情况下两矢量的距离。由于DTW不断地计算两矢量的距离以寻找最优的匹配路径,所以得到的是两矢量匹配时累积距离最小所对应的规整函数,这就保证了它们之间存在的最大声学相似性。
DTW算法的实质就是运用动态规划的思想,利用局部最佳化的处理来自动寻找一条路径,沿着这条路径,两个特征矢量之间的累积失真量最小,从而避免由于时长不同而可能引入的误差。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)