Python是运行在解释器中的语言,查找资料知道,python中有一个全局锁(GIL),在使用多线程(Thread)的情况下,不能发挥多核的优势。而使用多进程(Multiprocess),则可以发挥多核的优势真正地提高效率。
单线程、多线程和多进程的效率对比测试: github地址
资料显示,如果多线程的进程是CPU密集型的,那多线程并不能有多少效率上的提升,相反还可能会因为线程的频繁切换,导致效率下降,推荐使用多进程;如果是IO密集型,多线程进程可以利用IO阻塞等待时的空闲时间执行其他线程,提升效率。所以我们根据实验对比不同场景的效率
| CPU密集型 *** 作| IO密集型 *** 作| 网络请求密集型 *** 作
-- | -- | --| --
线性 *** 作| 69.73533328374 |17.76633326213 | 6.78833333651
多线程 *** 作| 75.40299995740 |145.68366670609 | 1.93999997775
多进程 *** 作| 13.97433336576 | 4.67833328247| 2.38333328565
仅个人观点,,欢迎留言~~~
python提供了两个模块来实现多线程thread 和threading ,thread 有一些缺点,在threading 得到了弥补,为了不浪费你和时间,所以我们直接学习threading 就可以了。继续对上面的例子进行改造,引入threadring来同时播放音乐和视频:
#coding=utf-8import threadingfrom time import ctime,sleepdef music(func):for i in range(2):print "I was listening to %s. %s" %(func,ctime())
sleep(1)def move(func):for i in range(2):print "I was at the %s! %s" %(func,ctime())
sleep(5)
threads = []
t1 = threading.Thread(target=music,args=(u'爱情买卖',))
threads.append(t1)
t2 = threading.Thread(target=move,args=(u'阿凡达',))
threads.append(t2)if __name__ == '__main__':for t in threads:
t.setDaemon(True)
t.start()print "all over %s" %ctime()
import threading
首先导入threading 模块,这是使用多线程的前提。
threads = []
t1 = threading.Thread(target=music,args=(u'爱情买卖',))
threads.append(t1)
创建了threads数组,创建线程t1,使用threading.Thread()方法,在这个方法中调用music方法target=music,args方法对music进行传参。 把创建好的线程t1装到threads数组中。
接着以同样的方式创建线程t2,并把t2也装到threads数组。
for t in threads:
t.setDaemon(True)
t.start()
最后通过for循环遍历数组。(数组被装载了t1和t2两个线程)
setDaemon()
setDaemon(True)将线程声明为守护线程,必须在start() 方法调用之前设置,如果不设置为守护线程程序会被无限挂起。子线程启动后,父线程也继续执行下去,当父线程执行完最后一条语句print "all over %s" %ctime()后,没有等待子线程,直接就退出了,同时子线程也一同结束。
start()
开始线程活动。
运行结果:
>>>========================= RESTART ================================
>>>I was listening to 爱情买卖. Thu Apr 17 12:51:45 2014 I was at the 阿凡达! Thu Apr 17 12:51:45 2014 all over Thu Apr 17 12:51:45 2014
从执行结果来看,子线程(muisc 、move )和主线程(print "all over %s" %ctime())都是同一时间启动,但由于主线程执行完结束,所以导致子线程也终止。
继续调整程序:
...if __name__ == '__main__':for t in threads:
t.setDaemon(True)
t.start()
t.join()print "all over %s" %ctime()
我们只对上面的程序加了个join()方法,用于等待线程终止。join()的作用是,在子线程完成运行之前,这个子线程的父线程将一直被阻塞。
注意: join()方法的位置是在for循环外的,也就是说必须等待for循环里的两个进程都结束后,才去执行主进程。
运行结果:
>>>========================= RESTART ================================
>>>I was listening to 爱情买卖. Thu Apr 17 13:04:11 2014 I was at the 阿凡达! Thu Apr 17 13:04:11 2014I was listening to 爱情买卖. Thu Apr 17 13:04:12 2014I was at the 阿凡达! Thu Apr 17 13:04:16 2014all over Thu Apr 17 13:04:21 2014
从执行结果可看到,music 和move 是同时启动的。
开始时间4分11秒,直到调用主进程为4分22秒,总耗时为10秒。从单线程时减少了2秒,我们可以把music的sleep()的时间调整为4秒。
...def music(func):for i in range(2):print "I was listening to %s. %s" %(func,ctime())
sleep(4)
...
子线程启动11分27秒,主线程运行11分37秒。
虽然music每首歌曲从1秒延长到了4 ,但通多程线的方式运行脚本,总的时间没变化。
什么是线程、进程?进程(process)与线程(thread)是 *** 作系统的基本概念,它们比较抽象,不容易掌握。
关于这两者,最经典的一句话就是“进程是资源分配的最小单位,线程是CPU调度的最小单位”,线程是程序中一个单一的顺序控制流程,进程内一个相对独立的、可调度的执行单元,是系统独立调度和分配CPU的基本单位指运行中的程序的调度单位,在单个程序中同时运行多个线程完成不同的工作,称为多线程。
进程与线程的区别是什么?
进程是资源分配的基本单位,所有与该进程有关的资源,都被记录在进程控制块PCB中,以表示该进程拥有这些资源或正在使用它们,另外,进程也是抢占处理机的调度单位,它拥有一个完整的虚拟地址空间,当进程发生调度时,不同的进程拥有不同的虚拟地址空间,而同一进程内的不同线程共享同一地址空间。
与进程相对应的,线程与资源分配无关,它属于某一个进程,并与进程内的其他线程一起共享进程的资源,线程只由相关堆栈(系统栈或用户栈)寄存器和线程控制表TCB组成,寄存器可被用来存储线程内的局部变量,但不能存储其他线程的相关变量。
通常在一个进程中可以包含若干个线程,它们可以利用进程所拥有的资源,在引入线程的 *** 作系统中,通常都是把进程作为分配资源的基本单位,而把线程作为独立运行和独立调度的基本单位。
由于线程比进程更小,基本上不拥有系统资源,所以对它的调度所付出的开销就会小得多,能更高效的提高系统内多个程序间并发执行的程度,从而显著提高系统资源的利用率和吞吐量。
因而近年来推出的通用 *** 作系统都引入了线程,以便进一步提高系统的并发性,并把它视为现代 *** 作系统的一个重要指标。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)