如何在程序中调用Caffe做图像分类,调用caffe图像分类

如何在程序中调用Caffe做图像分类,调用caffe图像分类,第1张

Caffe是目前深度学习比较优秀好用的一个开源库,采样c++和CUDA实现,具有速度快,模型定义方便等优点。学习了几天过后,发现也有一个不方便的地方,就是在我的程序中调用Caffe做图像分类没有直接的接口。Caffe的数据层可以从数据库(支持leveldb、lmdb、hdf5)、图片、和内存中读入。我们要在程序中使用,当然得从内存中读入,我们首先在模型定义文件中定义数据层:

layers {

name: "mydata"

type: MEMORY_DATA

top: "data"

top: "label"

transform_param {

scale: 0.00390625

}

memory_data_param {

batch_size: 10

channels: 1

height: 24

width: 24

}

}

这里必须设置memory_data_param中的四个参数,对应这些参数可以参见源码中caffe.proto文件。现在,我们可以设计一个Classifier类来封装一下:

#ifndef CAFFE_CLASSIFIER_H

#define CAFFE_CLASSIFIER_H

#include <string>

#include <vector>

#include "caffe/net.hpp"

#include "caffe/data_layers.hpp"

#include <opencv2/core.hpp>

using cv::Mat

namespace caffe {

template <typename Dtype>

class Classifier {

public:

explicit Classifier(const string&param_file, const string&weights_file)

Dtype test(vector<Mat>&images, vector<慧州int>&labels, int iter_num)

virtual ~Classifier() {}

inline shared_ptr<Net<Dtype>>net() { return net_}

void predict(vector<Mat>&images, vector<int>*labels)

void predict(vector<Dtype>&data, vector<int>*labels, int num)

void extract_feature(vector<Mat>&images, vector<vector<Dtype>>*out)

protected:

shared_ptr<Net<Dtype>>net_

MemoryDataLayer<Dtype>*m_layer_

int batch_size_

int channels_

int height_

int width_

DISABLE_COPY_AND_ASSIGN(Classifier)

}

}//namespace

#endif //CAFFE_CLASSIFIER_H

构造函数中我们通过模型定义文件(.prototxt)和训练好的模型(.caffemodel)文件构造一个Net对象,并用m_layer_指向Net中的雀茄memory data层,以便待会调用MemoryDataLayer中AddMatVector和Reset函数顷碧察加入数据。

#include <cstdio>

#include <algorithm>

#include <string>

#include <vector>

#include "caffe/net.hpp"

#include "caffe/proto/caffe.pb.h"

#include "caffe/util/io.hpp"

#include "caffe/util/math_functions.hpp"

#include "caffe/util/upgrade_proto.hpp"

#include "caffe_classifier.h"

namespace caffe {

template <typename Dtype>

Classifier<Dtype>::Classifier(const string&param_file, const string&weights_file) : net_()

{

net_.reset(new Net<Dtype>(param_file, TEST))

net_->CopyTrainedLayersFrom(weights_file)

//m_layer_ = (MemoryDataLayer<Dtype>*)net_->layer_by_name("mnist").get()

m_layer_ = (MemoryDataLayer<Dtype>*)net_->layers()[0].get()

batch_size_ = m_layer_->batch_size()

channels_ = m_layer_->channels()

height_ = m_layer_->height()

width_ = m_layer_->width()

}

template <typename Dtype>

Dtype Classifier<Dtype>::test(vector<Mat>&images, vector<int>&labels, int iter_num)

{

m_layer_->AddMatVector(images, labels)

//

int iterations = iter_num

vector<Blob<Dtype>* >bottom_vec

vector<int>test_score_output_id

vector<Dtype>test_score

Dtype loss = 0

for (int i = 0i <iterations++i) {

Dtype iter_loss

const vector<Blob<Dtype>*>&result =

net_->Forward(bottom_vec, &iter_loss)

loss += iter_loss

int idx = 0

for (int j = 0j <result.size()++j) {

const Dtype* result_vec = result[j]->cpu_data()

for (int k = 0k <result[j]->count()++k, ++idx) {

const Dtype score = result_vec[k]

if (i == 0) {

test_score.push_back(score)

test_score_output_id.push_back(j)

} else {

test_score[idx] += score

}

const std::string&output_name = net_->blob_names()[

net_->output_blob_indices()[j]]

LOG(INFO) <<"Batch " <<i <<", " <<output_name <<" = " <<score

}

}

}

loss /= iterations

LOG(INFO) <<"Loss: " <<loss

return loss

}

template <typename Dtype>

void Classifier<Dtype>::predict(vector<Mat>&images, vector<int>*labels)

{

int original_length = images.size()

if(original_length == 0)

return

int valid_length = original_length / batch_size_ * batch_size_

if(original_length != valid_length)

{

valid_length += batch_size_

for(int i = original_lengthi <valid_lengthi++)

{

images.push_back(images[0].clone())

}

}

vector<int>valid_labels, predicted_labels

valid_labels.resize(valid_length, 0)

m_layer_->AddMatVector(images, valid_labels)

vector<Blob<Dtype>* >bottom_vec

for(int i = 0i <valid_length / batch_size_i++)

{

const vector<Blob<Dtype>*>&result = net_->Forward(bottom_vec)

const Dtype * result_vec = result[1]->cpu_data()

for(int j = 0j <result[1]->count()j++)

{

predicted_labels.push_back(result_vec[j])

}

}

if(original_length != valid_length)

{

images.erase(images.begin()+original_length, images.end())

}

labels->resize(original_length, 0)

std::copy(predicted_labels.begin(), predicted_labels.begin() + original_length, labels->begin())

}

template <typename Dtype>

void Classifier<Dtype>::predict(vector<Dtype>&data, vector<int>*labels, int num)

{

int size = channels_*height_*width_

CHECK_EQ(data.size(), num*size)

int original_length = num

if(original_length == 0)

return

int valid_length = original_length / batch_size_ * batch_size_

if(original_length != valid_length)

{

valid_length += batch_size_

for(int i = original_lengthi <valid_lengthi++)

{

for(int j = 0j <sizej++)

data.push_back(0)

}

}

vector<int>predicted_labels

Dtype * label_ = new Dtype[valid_length]

memset(label_, 0, valid_length)

m_layer_->Reset(data.data(), label_, valid_length)

vector<Blob<Dtype>* >bottom_vec

for(int i = 0i <valid_length / batch_size_i++)

{

const vector<Blob<Dtype>*>&result = net_->Forward(bottom_vec)

const Dtype * result_vec = result[1]->cpu_data()

for(int j = 0j <result[1]->count()j++)

{

predicted_labels.push_back(result_vec[j])

}

}

if(original_length != valid_length)

{

data.erase(data.begin()+original_length*size, data.end())

}

delete [] label_

labels->resize(original_length, 0)

std::copy(predicted_labels.begin(), predicted_labels.begin() + original_length, labels->begin())

}

template <typename Dtype>

void Classifier<Dtype>::extract_feature(vector<Mat>&images, vector<vector<Dtype>>*out)

{

int original_length = images.size()

if(original_length == 0)

return

int valid_length = original_length / batch_size_ * batch_size_

if(original_length != valid_length)

{

valid_length += batch_size_

for(int i = original_lengthi <valid_lengthi++)

{

images.push_back(images[0].clone())

}

}

vector<int>valid_labels

valid_labels.resize(valid_length, 0)

m_layer_->AddMatVector(images, valid_labels)

vector<Blob<Dtype>* >bottom_vec

out->clear()

for(int i = 0i <valid_length / batch_size_i++)

{

const vector<Blob<Dtype>*>&result = net_->Forward(bottom_vec)

const Dtype * result_vec = result[0]->cpu_data()

const int dim = result[0]->count(1)

for(int j = 0j <result[0]->num()j++)

{

const Dtype * ptr = result_vec + j * dim

vector<Dtype>one_

for(int k = 0k <dim++k)

one_.push_back(ptr[k])

out->push_back(one_)

}

}

if(original_length != valid_length)

{

images.erase(images.begin()+original_length, images.end())

out->erase(out->begin()+original_length, out->end())

}

}

INSTANTIATE_CLASS(Classifier)

} // namespace caffe

由于加入的数据个数必须是batch_size的整数倍,所以我们在加入数据时采用填充的方式。

CHECK_EQ(num % batch_size_, 0) <<

"The added data must be a multiple of the batch size." //AddMatVector

在模型文件的最后,我们把训练时的loss层改为argmax层:

layers {

name: "predicted"

type: ARGMAX

bottom: "prob"

top: "predicted"

}

1.首先要准备几样蚂斗东西:

(1)要预测的图像,需要32×32大小

(2)网络配置文件洞洞,prototxt,以及每个图像的路径及其序号。

(3)训练好的caffemodel以及均值二进制文件,貌似可以定值,需要通过数据训练计算得到。

(3)预测的主程序

内容:

View Code

2.结果:

View Code

各个类别图示:

3.后记

上面是用CPU跑的,我还等了几秒钟,用了下GPU处理,闷颤磨瞬间,真的很快,Enter完就出结果了。

2.安装Visual Studio 2013;

3.如果与需要使用NVIDIA显卡的请安装Cuda和CuDNN,不需要可以不装姿蚂;

4.将.\windows\CommonSettings.props.example 复制一份并修改为 .\windows\CommonSettings.props,然后打开做如下修改:

1)如果不使用GPU,不安装CUDA和CuDNN,将CpuOnlyBuild 改为 true ,并且 UseCuDNN 改为 false;

2)安装CuDNN的情况下,将CuDNND路径复制到CuDnnPath;

3)选择支持Python或者MATLAB接口,当然也可以两个都迹衫埋支持,设置PythonSupport或者MatlabSupport为true,同时将Python或者MATLAB路径分别粘过来PythonDir和MatlabDir。

第二步,编译

打开.\windows\Caffe.sln,编塌孙译Caffe/convert_imageset、caffe、libcaffe、convert_mnist_data等,可以根据提示和需要进行,生成的caffe.exe为训练与测试的主程序,convert_imageset为将训练和测试数据生成LMDB使用的程序。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12289286.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-24
下一篇 2023-05-24

发表评论

登录后才能评论

评论列表(0条)

保存