你所说的A1应该是一个类似门槛的问题
当B在A附近波动时会出现报警断续现象,建议加入滤波,这样可以防止B的波动带来的报警不稳定
常见的滤波算法有10种
1、限幅滤波法(又称程序判断滤波法)
A、方法:
根据经验判断,确定两次采样允许的最大偏差值(设为A)
每次检测到新值时判断:
如果本次值与上次值之差<=A,则本次值有效
如果本次值与上次值之差>A,则本次值无效,放弃本次值,用上次值代替本次值
B、优点:
能有效克服因偶然因素引起的脉冲干扰
C、缺点
无法抑制那种周期性的干扰
平滑度差
2、中位值滤波法
A、方法:
连续采样N次(N取奇数)
把N次采样值按大小排列
取中乎纤间值为本次有效值
B、优点:
能有效克服因偶然因素引起的波动干扰
对温度、液位的变化缓慢的被测参数有良好的滤波效果
C、缺点:
对流量、速度等快速变化的参数不宜
3、算术平均滤波法
A、方法:
连续取N个采样值进行算术平均运算
N值较大时:信号平滑度较高,但灵敏度较低
N值较小时:信号平滑度较低,但灵敏度较高
N值的选取:一般流量,N=12;压力:N=4
B、优点:
适用于对一般具有随机干扰的信号进行滤波
这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动
C、缺点:
对于测量速度较慢或要求数据计算速度较快的实时控制不适用
比较浪费RAM
4、递推平均滤波法(又称滑动平均滤波法)
A、方法:
把连续取N个采样值看成一个队列
队列的长度固定为N
每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)
把队列中的N个数据进岁腔仿行算术平均运算,就可获得新的滤波结果
N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4
B、优点:
对周期性干扰有良好的抑制作用,平滑度高
适用于高频振荡的系统
C、缺点:
灵敏度低
对偶然出现的脉冲性干扰的抑制作用较差
不易消除由于脉冲干扰所引起的采样值偏差
不适用于脉冲干扰比较严重的场合
比较浪费RAM
5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
A、方法:
相当于“中位值滤波法”+“算术平均滤波法”
连续圆掘采样N个数据,去掉一个最大值和一个最小值
然后计算N-2个数据的算术平均值
N值的选取:3~14
B、优点:
融合了两种滤波法的优点
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
C、缺点:
测量速度较慢,和算术平均滤波法一样
比较浪费RAM
6、限幅平均滤波法
A、方法:
相当于“限幅滤波法”+“递推平均滤波法”
每次采样到的新数据先进行限幅处理,
再送入队列进行递推平均滤波处理
B、优点:
融合了两种滤波法的优点
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
C、缺点:
比较浪费RAM
7、一阶滞后滤波法
A、方法:
取a=0~1
本次滤波结果=(1-a)*本次采样值+a*上次滤波结果
B、优点:
对周期性干扰具有良好的抑制作用
适用于波动频率较高的场合
C、缺点:
相位滞后,灵敏度低
滞后程度取决于a值大小
不能消除滤波频率高于采样频率的1/2的干扰信号
8、加权递推平均滤波法
A、方法:
是对递推平均滤波法的改进,即不同时刻的数据加以不同的权
通常是,越接近现时刻的数据,权取得越大。
给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低
B、优点:
适用于有较大纯滞后时间常数的对象
和采样周期较短的系统
C、缺点:
对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号
不能迅速反应系统当前所受干扰的严重程度,滤波效果差
9、消抖滤波法
A、方法:
设置一个滤波计数器
将每次采样值与当前有效值比较:
如果采样值=当前有效值,则计数器清零
如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)
如果计数器溢出,则将本次值替换当前有效值,并清计数器
B、优点:
对于变化缓慢的被测参数有较好的滤波效果,
可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动
C、缺点:
对于快速变化的参数不宜
如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统
10、限幅消抖滤波法
A、方法:
相当于“限幅滤波法”+“消抖滤波法”
先限幅,后消抖
B、优点:
继承了“限幅”和“消抖”的优点
改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统
C、缺点:
对于快速变化的参数不宜
1.限幅滤波算法(程序判断滤波算法)
方法解析:
根据经验判断,确定两次采样允许的最大偏差值(设定为A),每次检测到新值时判断:
如果本次值与上次值之差<=A,则本次值有效,
如果本次值与上次值只差>A,则本次值无效,放弃本次值,用上次值代替本次值。
优点:
能有效克服因偶然因素引起的脉冲干扰
缺点:
无法桐携哪抑制那种周期性的干扰,平滑度差
[cpp] view plain copy
#define A 10
char value
char filter()
{
char new_value
new_value = get_ad()
if ( ( new_value - value > A ) || ( value - new_value > A )
return value
return new_value
}
2.中位值滤波法
方法解析:
连续采样N次(N取奇数),把N次采样值按大小排列,取中间值为本次有效值
优点:
能有效克服因偶然因素引起的波动干扰,对温度,液位的变化缓慢的被测局码参数有良好的滤波效果
缺点:
对流量,速度等快速变化的参数不宜
[cpp] view plain copy
#define N 11
char filter()
{
char value_buf[N]
char count,i,j,temp
for ( count=0count<Ncount++)
{
value_buf[count] = get_ad()
delay()
}
for (j=0j<N-1j++)
{
for (i=0i<N-ji++)
{
if ( value_buf[i]>value_buf[i+1] )
{
temp = value_buf[i]
value_buf[i] = value_buf[i+1]
value_buf[i+1] = temp
}
}
}
return value_buf[(N-1)/2]
}
3.算术平均滤波
方法解析:
连续取N个采样值进行平均运算,N值较大时:信号平滑度较高,但灵敏度较低
N值较小时:信号平滑度较低,但灵敏度较高。N值的选取:一般12左右。
优点:
适应于对一般具有随机干扰的信号进行滤波,这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动
缺点:
对于测量速度较慢或要求数据计算速度较快的实时控制并不适用,比较浪费RAM
[cpp] view plain copy
#define N 12
char filter()
{
int sum = 0
for ( count=0count<Ncount++)
{
sum + = get_ad()
delay()
}
return (char)(sum/N)
4.递推隐孝平均滤波(滑动平均滤波法)方法解析:
把连续取N个采样值看成一个队列,队列的长度固定为N,每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据(先进先出)。
把队列中的N个数据进行算术平均运算,就可获得新的滤波结果。N值的选取:一般12.
优点:
对周期性干扰有良好的抑制作用,平滑度高,适应于高频振荡的系统
缺点:
灵敏度低,对偶然出现的脉冲性干扰的抑制作用较差。不易消除由于脉冲干扰所引起打的采样值偏差,不适用于脉冲干扰比较严重的场合
浪费RAM
[cpp] view plain copy
#define N 12
char value_buf[N]
char i=0
char filter()
{
char count
int sum=0
value_buf[i++] = get_ad()
if ( i == N ) i = 0
for ( count=0count<N,count++)
sum = value_buf[count]
return (char)(sum/N)
}
5.中位值平均滤波法(防脉冲干扰平均滤波法)
方法解析:
相当于中位值滤波+算术平均滤波,连续采样N个数据,去掉一个最大值和一个最小值,然后计算N-2个数据的算术平均值。
N值的选取:3-14
优点:融合了两种滤波法的优点
对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差。
缺点:
测量速度较慢,和算法平均滤波一样,浪费RAM。
[cpp] view plain copy
#define N 12
char filter()
{
char count,i,j
char value_buf[N]
int sum=0,temp=0
for (count=0count<Ncount++)
{
value_buf[count] = get_ad()
delay()
}
for (j=0j<N-1j++)
{
for (i=0i<N-ji++)
{
if ( value_buf[i]>value_buf[i+1] )
{
temp = value_buf[i]
value_buf[i] = value_buf[i+1]
value_buf[i+1] = temp
}
}
}
for(count=1count<N-1count++)
sum += value[count]
return (char)(sum/(N-2))
}
6一阶滞后滤波法
方法解析:
取a=0-1
本次滤波结果=(1-a)*本次采样值+a*上次滤波结果
优点:
对周期性干扰具有良好的抑制作用,适用于波动频率较高的场合
缺点:
相位滞后,灵敏度低,滞后程度取决于a值的大小,不能消除滤波频率高于采样频率的1/2的干扰信号
[cpp] view plain copy
#define a 50
char value
char filter()
{
char new_value
new_value = get_ad()
return (100-a)*value + a*new_value
}
7.加权递推平均滤波法
方法解析:
是对递推平均滤波法的改进,即不同时刻的数据加以不同的权
通常是,越接近现时刻的数据,权取得越大,给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低。
优点:
适用于有较大纯滞后时间常数的对象,和采样周期较短的系统
缺点:
对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号,不能迅速反应系统当前所受干扰的严重程度,滤波效果差。
[cpp] view plain copy
#define N 12
char code coe[N] = {1,2,3,4,5,6,7,8,9,10,11,12}
char code sum_coe = 1+2+3+4+5+6+7+8+9+10+11+12
char filter()
{
char count
char value_buf[N]
int sum=0
for (count=0,count<Ncount++)
{
value_buf[count] = get_ad()
delay()
}
for (count=0,count<Ncount++)
sum += value_buf[count]*coe[count]
return (char)(sum/sum_coe)
}
8.消抖滤波法
方法解析:
设置一个滤波计数器,将每次采样值与当前有效值比较:
如果采样值=当前有效值,则计数器清零,如果采样值<>当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出),如果计数器溢出,则将本次值替换当前有效值,并清计数器
优点:
对于变化缓慢的被测参数有较好的滤波效果,可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动。
缺点:
对于快速变化的参数不宜,如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导入系统
[cpp] view plain copy
#define N 12
char filter()
{
char count=0
char new_value
new_value = get_ad()
while (value !=new_value)
{
count++
if (count>=N) return new_value
delay()
new_value = get_ad()
}
return value
}
10.低通数字滤波
解析:
低通滤波也称一阶滞后滤波,方法是第N次采样后滤波结果输出值是(1-a)乘第N次采样值加a乘上次滤波结果输出值。可见a<<1。
该方法适用于变化过程比较慢的参数的滤波的C程序函数如下:
[cpp] view plain copy
float low_filter(float low_buf[])
{
float sample_value
float X=0.01
sample_value=(1_X)*low_buf[1]+X*low buf[0]
retrun(sample_value)
}
当我们使用1200PLC进行滤波均值计算时,可以采用以下步骤进行程序编写:1. 首毕培肆先,我们需要将采集到的原始数据存储至一个数组中,以便后续的计算。
2. 接着,我们需要定义一个变量来存储滑动窗口的大小,通常情况下,一个合适的窗口大小是根据实际应用场景来确定的。
3. 然后,我们可以通过循环语句将窗口内的数据进行累加,并计算出中侍平均值。在每次循环中,我们需要将最早加入窗口的数据删除,并将最新采集到的数据添加至窗口中。
4. 最后,我们需要将计算出的均值结果输出或存储至某个寄存器、数据存储器、或者其他设备中供后续使用。
比如,下面是一个示例程序:
```LD M100开始存储原始数据
LD D100将D100的值存储到M100中
ADD X0 将X0中的值加1
MOV D100, M[X0] 将M[X0]的值存储到D100中
CMP X0, K1N10 判断X0是否大于等于K1N10
JMPE ELSE如果是,则跳转至ELSE
AVG: 均值计算过程
MOV D10, D100 将D100的值存储到D10中
ADD D20, D10 将D10加到D20中
ADD X1, K1将X1加1
CMP X1, K2N10 判断X1是否大于等于K2N10
JMPE OUTPUT 如果是,手轿则跳转至OUTPUT
MOV D100, M[X1] 将新采集的数据存储到D100中
SUB D20, D[K1] 将最早加入窗口的数据删除
JMP AVG 重复执行均值计算过程
OUTPUT:
DIV D20, K1N10 计算出平均值
ST D30, M[100] 将结果存储至M100寄存器中
JMP START 回到程序开始处
ELSE:
MOV X0, K1 将X0重置为窗口大小
MOV D20, K0 将累加器清零
JMP AVG 执行均值计算
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)