用matlab viterbi算法怎么求传输

用matlab viterbi算法怎么求传输,第1张

[mlse_Eq.zip] - 含有已知信道下BPSK,QPSK,8PSK,16QAM的mlse均衡,MMSE(频域)均衡SER,BER性能的对比。

[wanzhengchengxu.rar] - 信号在信道进行传输时,经常会出现串扰,采用基于最大似然序列估计(mlse)的电子色散均衡器的方法,克服此蔽光纤通信中的由各种色散引起的码间干扰。 研究基于最大似然序列估计(MLSE)的档友均衡器,采用维特比算法实现,用matlab仿真出采用MLSE后的性能指标(眼图和误码率)的提升。

[TCMchengxu.rar] - matlab实现行扒槐8PSK TCM网格编码调制,包含维特比译码和与未编码的QPSK误码性能比较

[OFDM_code.rar] - 本代码是关于OFDM通信系统的仿真源程序,其中信道编码,QPSK调制,QPSK解调,FFT,IFFT,viterbi编译码,误比特统计,滤波等模块。

function out = sovadec( msg, llr, trl, win )

% SOVADEC is an implementation of the soft input soft output Viterbi

% algorithm. The algorithm can be called using

% DEC = SOVADEC( MSG, LLR, TRELLIS, WIN )

% where MSG is the soft input (codeword), LLR is a priori information

% per bit about the bits (log likelihood ratios), TRELLIS is the

% trellis structure describing the convolutional encoder used to

% encode the original information message.

%

% The output of the function is the vector containing the soft

% estimates of the originally encoded information. The implementation

% is able to perform decoding using any trellis structure compatibile

% with the standard Matlab POLY2TRELLIS function.

%

% WIN describes the size of the trellis buffer used to perform the

% Viterbi algorithm. Thus, the decoder estimates the best path through

% the trellis and searches back within this buffer at every decoding

% time instant.

% If WIN is omitted, the trellis of length N+1 (where N is the size

% of the decoded message) is used.

%

% For the estimation of the reliability information only the second

% best path (competitor) is used, even if there are more than two

% paths merging at a particular state.

%

% The output of the decoding algorithm is of the following form

% out = sign(inp) * log( P(inp=1|out) ) / log( P(inp=-1|out) )

%

% See also: POLY2TRELLIS, CONVENCO, VITDEC

%% (c) 2003 Adrian Bohdanowicz

%% $Id: sovadec.m,v 1.16 2003/06/15 14:57:29 adrian Exp $

enc = trellis2enc( trl )

if( enc.k == 1 )

out = sovadec_1N( msg, llr, trl, win )% use 1/N optimized code (2x faster)

else

out = sovadec_KN( msg, llr, trl, win )% uset K/N generic code

end

return

function enc = trellis2enc( trl ),

% put the trellis structure into a more user friendly manner

enc.k = log2( trl.numInputSymbols ) % number of inputs

enc.n = log2( trl.numOutputSymbols ) % numbor of outputs

enc.r = enc.k / enc.n % code rate

enc.ksym = trl.numInputSymbols% number of possible input combinations

enc.nsym = trl.numOutputSymbols % number of possible output combinations

enc.stat = trl.numStates % number of encoder states

% forward transitions:

enc.next.states = trl.nextStates + 1 % NEXT states

enc.next.output = trl.outputs % NEXT outputs

for i = 1:enc.ksym, % NEXT (binary) outputs

enc.next.binout( :,:,i ) = 2*de2bi( oct2dec( trl.outputs(:,i) ), enc.n )-1

end

% store possible binary outputs and inputs:

enc.inp = de2bi( oct2dec( [0:enc.ksym-1] ), enc.k, 'left-msb' ) % all possible binary inputs

enc.out = de2bi( oct2dec( [0:enc.nsym-1] ), enc.n, 'left-msb' ) % all possible binary outputs

enc.bininp = 2*enc.inp-1

return

function out = sovadec_1N( msg, llr, trl, win ),

% SOVADEC optimized for 1/N encoders (faster!)

% error checking:

if( ~istrellis( trl ) ), error( 'Incorrect input trellis!' )end

if( nargin <= 2 ), error( 'Incorrect number of input args!' )end

if( nargin == 3 ), win = length( llr )+1end

% some parameters:

INF = 9e9 % infinity

enc = trellis2enc( trl ) % encoder parameters

len = length( llr ) / enc.k % number of decoding steps (total)

win = min( [ win, len ] ) % trim the buffer if msg is short

old = NaN % to remember the last survivor

% allocate memory for the trellis:

metr = zeros( enc.stat, win+1 ) -INF % path metric buffer

metr( 1,1 ) = 0 % initial state =>(0,0)

surv = zeros( enc.stat, win+1 ) % survivor state buffer

inpt = zeros( enc.stat, win+1 ) % survivor input buffer (dec. output)

diff = zeros( enc.stat, win+1 ) % path metric difference

comp = zeros( enc.stat, win+1 ) % competitor state buffer

inpc = zeros( enc.stat, win+1 ) % competitor input buffer

out = zeros( size(llr) ) + NaN % hard output (bits)

sft = zeros( size(llr) ) + INF % soft output (sign with reliability)

% decode all the bits:

for i = 1:len,

% indices + precalcuations:

Cur = mod( i-1, win+1 ) +1% curr trellis (cycl. buf) position

Nxt = mod( i, win+1 ) +1% next trellis (cycl. buf) position

buf = msg( i*enc.n:-1:(i-1)*enc.n+1 ) % msg portion to be processed (reversed)

llb = llr( (i-1)+1:i )% SOVA: llr portion to be processed

metr( :,Nxt ) = -INF -INF % (2*) helps in initial stages (!!!)

%% forward recursion:

for s = 1:enc.stat,

for j = 1:enc.ksym,

nxt = enc.next.states( s, j )% state after transition

bin = enc.next.binout( s,:,j )% transition output (encoder)

mtr = bin*buf' + metr( s,Cur )% transition metric

mtr = mtr ...

+ enc.bininp( j )*(llb*enc.r)'% SOVA

if( metr( nxt,Nxt ) <mtr ),

diff( nxt,Nxt ) = mtr - metr( nxt,Nxt ) % SOVA

comp( nxt,Nxt ) = surv( nxt,Nxt ) % SOVA

inpc( nxt,Nxt ) = inpt( nxt,Nxt ) % SOVA

metr( nxt,Nxt ) = mtr % store the metric

surv( nxt,Nxt ) = s % store the survival state

inpt( nxt,Nxt ) = j-1 % store the survival input

else

dif = metr( nxt,Nxt ) - mtr

if( dif <= diff( nxt,Nxt ) )

diff( nxt,Nxt ) = dif % SOVA

comp( nxt,Nxt ) = s % SOVA

inpc( nxt,Nxt ) = j-1 % SOVA

end

end

end

end

%% trace backwards:

if( i <win ), continueend % proceed if the buffer has been filled

[ mtr, sur ] = max( metr( :,Nxt ) ) % find the intitial state (max metric)

b = i % temporary bit index

clc = mod( Nxt-[1:win], win+1 ) +1% indices in a 'cyclic buffer' operation

for j = 1:win, % for all the bits in the buffer

inp = inpt( sur, clc(j) ) % current bit-decoder output (encoder input)

out( b ) = inp% store the hard output

tmp = clc( j )

cmp = comp( sur, tmp ) % SOVA: competitor state (previous)

inc = inpc( sur, tmp ) % SOVA: competitor bit output

dif = diff( sur, tmp ) % SOVA: corresp. path metric difference

srv = surv( sur, tmp ) % SOVA: temporary survivor path state

for k = j+1:win+1, % check all buffer bits srv and cmp paths

if( inp ~= inc ),

tmp = dif

idx = b - ( (k-1)-j ) % calculate index: [enc.k*(b-(k-1)+j-1)+1:enc.k*(b-(k-1)+j)]

sft( idx ) = min( sft(idx), tmp ) % update LLRs for bits that are different

end

if( srv == cmp ), breakend % stop if surv and comp merge (no need to continue)

if( k == win+1 ), breakend % stop if the end (otherwise: error)

tmp = clc( k )

inp = inpt( srv, tmp ) % previous surv bit

inc = inpt( cmp, tmp ) % previous comp bit

srv = surv( srv, tmp ) % previous surv state

cmp = surv( cmp, tmp ) % previous comp state

end

sur = surv( sur, clc(j) ) % state for the previous surv bit

b = b - 1 % update bit index

end

end

% provide soft output with +/- sign:

out = (2*out-1) .* sft

return

function out = sovadec_KN( msg, llr, trl, win )

% error checking:

if( ~istrellis( trl ) ), error( 'Incorrect input trellis!' )end

if( nargin <= 2 ), error( 'Incorrect number of input args!' )end

if( nargin == 3 ), win = length( llr )+1end

% some parameters:

INF = 9e9 % infinity

enc = trellis2enc( trl ) % encoder parameters

len = length( llr ) / enc.k % number of decoding steps (total)

win = min( [ win, len ] ) % trim the buffer if msg is short

old = NaN % to remember the last survivor

% allocate memory for the trellis:

metr = zeros( enc.stat, win+1 ) -INF % path metric buffer

metr( 1,1 ) = 0 % initial state =>(0,0)

surv = zeros( enc.stat, win+1 ) % survivor state buffer

inpt = zeros( enc.stat, win+1 ) % survivor input buffer (dec. output)

diff = zeros( enc.stat, win+1 ) % path metric difference

comp = zeros( enc.stat, win+1 ) % competitor state buffer

inpc = zeros( enc.stat, win+1 ) % competitor input buffer

out = zeros( size(llr) ) + NaN % hard output (bits)

sft = zeros( size(llr) ) + INF % soft output (sign with reliability)

% decode all the bits:

for i = 1:len,

% indices + precalcuations:

Cur = mod( i-1, win+1 ) +1% curr trellis (cycl. buf) position

Nxt = mod( i, win+1 ) +1% next trellis (cycl. buf) position

buf = msg( i*enc.n:-1:(i-1)*enc.n+1 ) % msg portion to be processed (reversed)

llb = llr( (i-1)*enc.k+1:i*enc.k )% SOVA: llr portion to be processed

metr( :,Nxt ) = -INF -INF % (2*) helps in initial stages (!!!)

%% forward recursion:

for s = 1:enc.stat,

for j = 1:enc.ksym,

nxt = enc.next.states( s, j )% state after transition

bin = enc.next.binout( s,:,j )% transition output (encoder)

mtr = bin*buf' + metr( s,Cur )% transition metric

mtr = mtr ...

+ enc.bininp(j,:)*(llb*enc.r)'% SOVA

if( metr( nxt,Nxt ) <mtr ),

diff( nxt,Nxt ) = mtr - metr( nxt,Nxt ) % SOVA

comp( nxt,Nxt ) = surv( nxt,Nxt ) % SOVA

inpc( nxt,Nxt ) = inpt( nxt,Nxt ) % SOVA

metr( nxt,Nxt ) = mtr % store the metric

surv( nxt,Nxt ) = s % store the survival state

inpt( nxt,Nxt ) = j-1 % store the survival input

else

dif = metr( nxt,Nxt ) - mtr

if( dif <= diff( nxt,Nxt ) )

diff( nxt,Nxt ) = dif % SOVA

comp( nxt,Nxt ) = s % SOVA

inpc( nxt,Nxt ) = j-1 % SOVA

end

end

end

end

%% trace backwards:

if( i <win ), continueend % proceed if the buffer has been filled

[ mtr, sur ] = max( metr( :,Nxt ) ) % find the intitial state (max metric)

b = i % temporary bit index

clc = mod( Nxt-[1:win], win+1 ) +1% indices in a 'cyclic buffer' operation

for j = 1:win, % for all the bits in the buffer

inp = inpt( sur, clc(j) ) % current bit-decoder output (encoder input)

t = [ enc.k*(b-1)+1:enc.k*b ] % compute the index

out( t ) = enc.inp( inp+1,: ) % store the hard output

cmp = comp( sur, clc(j) ) % SOVA: competitor state (previous)

inc = inpc( sur, clc(j) ) % SOVA: competitor bit output

dif = diff( sur, clc(j) ) % SOVA: corresp. path metric difference

srv = surv( sur, clc(j) ) % SOVA: temporary survivor path state

for k = j+1:win+1, % check all buffer bits srv and cmp paths

inp = enc.inp( inp+1, : ) % convert to binary form

inc = enc.inp( inc+1, : ) % convert to binary form

tmp = ( inp == inc )*INF + dif% for each different bit store the new dif

idx = t - enc.k*( (k-1)-j ) % calculate index: [enc.k*(b-(k-1)+j-1)+1:enc.k*(b-(k-1)+j)]

sft( idx ) = min( sft(idx), tmp ) % update LLRs for bits that are different

if( srv == cmp ), breakend % stop if surv and comp merge (no need to continue)

if( k == win+1 ), breakend % stop if the end (otherwise: error)

inp = inpt( srv, clc(k) ) % previous surv bit

srv = surv( srv, clc(k) ) % previous surv state

inc = inpt( cmp, clc(k) ) % previous comp bit

cmp = surv( cmp, clc(k) ) % previous comp state

end

sur = surv( sur, clc(j) ) % state for the previous surv bit

b = b - 1 % update bit index

end

end

% provide soft output with +/- sign:

out = (2*out-1) .* sft

return


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12381750.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-25
下一篇 2023-05-25

发表评论

登录后才能评论

评论列表(0条)

保存