什么叫神经元神经元节点信息计算方法

什么叫神经元神经元节点信息计算方法,第1张

隐层节点数在BP网络中,隐层节点数的选择非常重要,不仅对建立的神经网络模型的性能影响很大,而且是训练时出现“过拟合”的直接原因,但是目前理论上还没有一种科学的和普遍的确定方法。

神经元之间联系的基本方式是形成突触,突触由突触前膜、突触间隙和突触后膜构成,突触前膜内侧有大量线粒体和囊泡,不同类型突触所含囊泡的形态、大小及递质均不同。突触后膜上有递质作用的受体。

扩展资料:

神经元也和其他类型的细胞一样,包括有细胞膜、细胞质和细胞核。但是神经细胞的形态手码埋比较特殊,具有许多突起,因此又分为细胞体、轴突和树突三部分。细胞体内有细胞核,突起的作用是传递信息。树突是作为引入输入信号的突起,而轴突是作为模山输出端的突起,它只有一个。

人工神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是毕蚂某种模仿、简化和抽象。与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制。

参考资料来源:百度百科-神经网络算法

直接简单介绍神经网络算法

神经元:它是神经网络的基本单元。神经元先获得输入,然后执行某些数学运算后,再产生一个输出。

神经元内输入 经历了3步数学运算,

先将两个输入乘以 权重镇键 :

权重 指某一因素或指标相对于某一事物的重要程度,其不同于一般的比重,体现的不仅仅是某一因素或指标所占的百分比,强调的是因素或指标的相对重要程度

x1→x1 × w1

x2→x2 × w2

把两个结果相加,加上一个 偏置 :

(x1 × w1)+(x2 × w2)+ b

最后将它们经过 激活函数 处理得到输出:

y = f(x1 × w1 + x2 × w2 + b)

激活函数 的作用是将无限制的输入转换为可预测形式的输出。一种常用的激活函数是 sigmoid函数

sigmoid函数的输出 介于0和1,我们可以理解为它把 (−∞,+∞) 范围内的数压缩到 (0, 1)以内。正值越大输出越接近1,负向数值越大输出越接近0。

神经网络: 神经网络就是把一堆神经元连接在一起

隐藏层 是夹在输入输入层和输出卜银层之间的部分,一个神经网络可以有多个隐藏层。

前馈 是指神经元的输入向前传递获得输出的过程

训练神经网络 ,其实这就是一个优化的过程,将损失最小化

损失 是判断训练神经网络的一个标准

可用 均方误差 定义损失

均方误差 是反映 估计量 与 被估计量 之间差异程度的一种度量。设t是根据子样确定的总体参数θ的一个估计量,(θ-t)2的 数学期望御弊巧 ,称为估计量t的 均方误差 。它等于σ2+b2,其中σ2与b分别是t的 方差 与 偏倚 。

预测值 是由一系列网络权重和偏置计算出来的值

反向传播 是指向后计算偏导数的系统

正向传播算法 是由前往后进行的一个算法


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12465850.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-25
下一篇 2023-05-25

发表评论

登录后才能评论

评论列表(0条)

保存