51单片机怎么驱动直流电机c语言

51单片机怎么驱动直流电机c语言,第1张

51单老码片机驱动直流电机程序(用的是l298n芯片):

#include<reg51.h>

#include<math.h>

#defineuintunsignedint

#defineucharunsignedchar

#defineN100

sbit s1=P1^0//电机驱动口

sbits2=P1^1//电机驱动口

sbits3=P1^2//电机驱动口

sbits4=P1^3//电机驱动口

sbiten1=P1^4//电机使能端

sbiten2=P1^5//电机使能端

sbitLSEN=P2^0//光电对管最左

sbitLSEN1=P2^1//光电对管左1

sbitLSEN2=P2^2//光电对管左2

sbitRSEN1=P2^3//光腊闹电对管右1

sbitRSEN2=P2^4//光电对管右2

sbitRSEN=P2^5//光电对管最右

uintpwm1=0,pwm2=0,t=0

voiddelay(uintxms)

{

uinta

while(--xms)

{

for(a=123a>0a--)

}

}

voidmotor(ucharspeed1,ucharspeed2)

{

if(speed1>=-100&&speed1<=100)

{

pwm1=abs(speed1)

if(speed1>0)

{

s1=1

s2=0

}

if(speed1==0)

{

s1=1

s2=1

}

if(speed1<0)

{

s1=0

s2=1

}

}

if(speed2>=-100&&speed2<=100)

{

pwm2=abs(speed2)

if(speed2>0)

{

s3=1

s4=0

}

if(speed2==0)

{

s3=1

s4=1

}

if(speed2<0)

{

s3=0

s4=1

}

}

}

voidgo_forward(uintspeed)

{

s1=1

s2=0

s3=1

s4=0

pwm1=speed

pwm2=speed

}

voidgo_back(uintspeed)

{

s1=0

s2=1

s3=0

s4=1

pwm1=speed

pwm2=speed

}

voidstop()

{

s1=1

s2=1

s3=1

s4=1

pwm1=0

pwm2=0

}

voidturn_right(uintP1,uintP2)//右转函数

{

s1=1

s2=0

s3=0

s4=1

pwm1=P1

pwm2=P2

}

voidturn_left(uintP1,uintP2)//左转函数

{

s1=0

s2=1

s3=1

s4=0

pwm1=P1

pwm2=P2

}

voidtracking()

{

if((LSEN1==0)&&(LSEN2==0)&&(RSEN1==0)&&(RSEN2==0))//没有检测到

{

go_forward(100)

}

if((LSEN1==1)&&(LSEN2==0)&&(RSEN1==0)&&(RSEN2==0))//左一检测到

{

turn_left(40,80)//左转右轮》左轮

delay(N)

}

if((LSEN1==0)&&(LSEN2==1)&&(RSEN1==0)&&(RSEN2==0))//左二检测到

{

turn_left(40,60)//左转右轮》左轮

delay(N)

}

if((LSEN1==0)&&(LSEN2==0)&&(RSEN1==1)&&(RSEN2==0))//右一检测到

{

turn_right(60,4)//右转左轮》右轮

delay(N)

}

if((LSEN1==0)&&(LSEN2==0)&&(RSEN1==0)&&(RSEN2==1))//右二检测到

{

turn_right(80,40)//右转左轮》右轮

delay(N)

}

if((LSEN1==1)&&(LSEN2==1))

{

turn_left(0,100)

delay(1000)

}

if((RSEN1==1)&&(RSEN2==1))

{

turn_right(100,0)

delay(1000)

}

}

voidavoidance()

{

}

voidinit()

{

TMOD=0x02//timer0同时轮含罩配置为模式2,8自动重装计数模式

TH0=156//定时器初值设置100us中断

TL0=156

ET0=1

EA=1

TR0=1//开启总中断

}

voidmain()

{

init()

while(1)

{

tracking()

}

}

voidtimer0()interrupt1//电机驱动提供PWM信号

{

if(t<pwm1)

en1=1

else

en1=0

if(t<pwm2)

en2=1

else

en2=0

t++

if(t>100)

t=0

}

扩展资料

L298N是一种双H桥电机驱动芯片,其中每个H桥可以提供2A的电流,功率部分的供电电压范围是2.5-48v,逻辑部分5v供电,接受5vTTL电平。一般情况下,功率部分的电压应大于6V否则芯片可能不能正常工作。

参考资料来源:百度百科-l298n

步进电机控制程序(c语言+51单片机)

#include<reg51.h>

#define uint unsigned int

#define uchar unsigned char

#define ms *77

// f = 12 M

#define LEDLen 4

#define Dj_star() {IE=0x81pri_dj=0}

#define Dj_stop() {IE=0x00pri_dj=1P1=0xffshache="0"delay(800ms)delay(800ms)delay(400ms)shache = 1}

#define Chilun_Num 8

/* 齿轮数 8 个*/

#define set_display_num() { LEDBuf[0] = tmp /余神 1000LEDBuf[1] = tmp / 100 % 10 \

LEDBuf[2] = tmp / 10 % 10 LEDBuf[3] = tmp % 10 }

uchar LEDBuf[LEDLen] = {0,0,0,0}

void read_num () /* 读播码盘 到 set_round_num * 8 */

void display ()

void delay(uint delay_time) { uint ifor (i=0i <delay_time i++) }

void run ()

void fx_run()

uint round_num = 0 /* 记录已转的 齿轮数 , 中断1次 加 1*/

uint set_round_num = 0 /* 播码盘设置 圈数 */

uint set_pwm_width = 0 /* 播码盘设置 步进电机 正向速度 */

bit one_round_flg = 0

sbit led_1000 = P0^7 //use for display

sbit led_100 = P0^6 //use for display

sbit led_10= P0^5 //use for display

sbit led_1 = P0^4 //use for display

sbit key_start = P3^0

sbit key_puse = P3^0

sbit key_clear = P3^1

/* P3^2 接齿轮传感器 中断 */

sbit bujin_zx_stop = P3^3 /* 接步进电机 ,正向逗裂到位传感器 ,为 0 停机 */

sbit bujin_fx_stop = P3^4 /* 接步进电机 ,反向到位传感器 ,为 0 停机 */

sbit shache= P3^5 /* 接刹车控制继电器 0 电位有效 */

sbit pri_dj= P3^6 /* 接主电机控竖指亏制继电器 0 电位有效 */

void main(){

TCON = 0x01

display()

while(1) {

IE="0x00"

round_num = 0

display()

if ( bujin_fx_stop ) fx_run()

while ( key_start )

delay ( 8ms )

if(!key_start){

read_num()

//set_round_num = 8

while ( !key_start )

run ()

fx_run()

}

}

}

void run () {

#define Delay_time 180

/* 转一圈 50 次循环,每循环 4 步 ,50 * 4 = 200 , 200 * 1。8 = 360 */

uchar i

P1 = 0xff

set_pwm_width = 15 + set_pwm_width / 10

while ( 1 ) {

while( !shache | !key_start )

Dj_star()

for ( i="0" bujin_zx_stop &!pri_dji++ ){

P1 = 0xf9

delay ( Delay_time ) // bujin_zx_stop = P3^3

P1 = 0xfc // bujin_fx_stop = P3^4

delay ( Delay_time) // key_puse = P3^0

P1 = 0xf6 // key_clear = P3^1

delay ( Delay_time ) // shache= P3^5

P1 = 0xf3 // pri_dj= P3^6

delay ( Delay_time )

if( i == set_pwm_width ) { P1 = 0xffi = 0one_round_flg = 0while ( !one_round_flg &key_puse )}

if(!key_puse) { delay(4ms) if(!key_puse) break }

}

P1 = 0xff

if ( pri_dj ) break

if ( !key_puse ) {

delay ( 8ms )

if ( !key_puse ) {

Dj_stop()

while ( !key_puse )

// next pree key

while( !shache )

while(1){

while ( key_puse & key_clear )

delay ( 8ms )

if ( !key_clear ) { round_num = 0display()}

if ( !key_puse ) break

}

while( !key_puse )

delay(8ms)

while( !key_puse )

}

}

}

}

void ext_int0(void) interrupt 0 { /* 主电机 齿轮 中断 */

uint tmp

EA = 0

if( !pri_dj ){

round_num ++

if (round_num % Chilun_Num == 0 ){

one_round_flg = 1

tmp = round_num / Chilun_Num

set_display_num()

P0 = 0xf0

P0 = P0 | LEDBuf[0]

led_1000 = 0

P0 |= 0xf0

P0 = 0xf0

P0 = P0 | LEDBuf[1]

led_100 = 0

P0 |= 0xf0

P0 = 0xf0

P0 = P0 | LEDBuf[2]

led_10= 0

P0 |= 0xf0

P0 = 0xf0

P0 = P0 | LEDBuf[3]

led_1 = 0

P0 |= 0xf0

P0 = 0xf0

}

if ( round_num >= set_round_num ) Dj_stop()

}

EA = 0x81

}

void display(){

uchar i

uint tmp = 0

tmp = round_num / Chilun_Num

set_display_num()

for(i = 0i <LEDLen i ++){

P0 = 0xf0

P0 = P0 | LEDBuf[i]

if(i==0) led_1000 = 0 //P0^4

if(i==1) led_100 = 0 //P0^5

if(i==2) led_10= 0 //P0^6

if(i==3) led_1 = 0 //P0^7

P0 |= 0xf0

}

P0 = 0xf0

}

void read_num(){

/* 读播码盘 到 set_round_num ,set_pwm_width */

uchar tmp

P2 = 0xFF

P2 = 0xEF // 1110 1111

delay ( 1ms )

tmp = ~(P2 | 0xF0)

P2 = 0xDF // 1101 1111

delay ( 1ms )

tmp = (~(P2 | 0xF0 )) * 10 + tmp

set_round_num = tmp

P2 = 0xBF // 1011 1111

delay ( 1ms )

tmp = (~(P2 | 0xF0))

P2 = 0x7F // 0111 1111

delay ( 1ms )

tmp = (~(P2 | 0xF0)) * 10 + tmp

set_round_num = set_round_num + tmp * 100

set_round_num = set_round_num * Chilun_Num

P2 = 0xFF

P1 = 0xbF // 0111 1111

delay ( 1ms )

tmp = ~(P2 | 0xF0)

P1 = 0xFF

P2 = 0xFF

P1 &= 0x7F // 1011 1111

delay ( 1ms )

tmp = (~(P2 | 0xF0)) * 10 + tmp

set_pwm_width = tmp

P1 = 0xFF

P2 = 0xFF

}

void fx_run(){

#define f_Delay_time 180

while ( bujin_fx_stop ) { /* 反向 回车 直到 传感器 动作*/

P1 = 0xf3 //0011

delay ( f_Delay_time )

P1 = 0xf6 //0110

delay ( f_Delay_time )

P1 = 0xfc //1100

delay ( f_Delay_time )

P1 = 0xf9 //1001

delay ( f_Delay_time )

}

P1 = 0xff

}

Sapog开源高性能电调。设计用于电动无人驾悄念驶飞机(UAV)和船舶的推进系统,Sapog是一种先进的开源无传感器PMSM/BLDC电机控制器启孙困固件。电机驱动凯戚控制部分也叫做电子调速器,简称电调,电调对应使用的电机不同,分无刷电调和有刷电调。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/yw/12545535.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-26
下一篇 2023-05-26

发表评论

登录后才能评论

评论列表(0条)

保存